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Abstract. In this article, we study the stochastic wave equation in all dimensions d ≤ 3, driven by a Gaussian noise Ẇ which does not
depend on time. We assume that either the noise is white, or the covariance function of the noise satisfies a scaling property similar to
the Riesz kernel. The solution is interpreted in the Skorohod sense using Malliavin calculus. We obtain the exact asymptotic behaviour
of the p-th moment of the solution either when the time is large or when p is large. For the critical case, that is the case when d = 3
and the noise is white, we obtain the exact transition time for the second moment to be finite.

Résumé. Dans cet article, nous étudions l’équation des ondes stochastique en dimensions d ≤ 3, dirigée par un bruit gaussien Ẇ qui
ne dépend pas du temps. On suppose que soit le bruit est blanc, soit la fonction de covariance du bruit satisfait une propriété d’échelle
similaire au noyau de Riesz. La solution est interprétée dans le sens de Skorohod en utilisant le calcul de Malliavin. On obtient le
comportement asymptotique exact du p-ième moment de la solution soit lorsque le temps est grand, soit lorsque p est grand. Pour le
cas critique, i.e. si d = 3 et le bruit est blanc, on obtient le temps de transition exact pour que le deuxième moment soit fini.
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Moment blowup

1. Introduction

In this paper, we study the following stochastic wave equation:

(1.1)

⎧⎪⎪⎨⎪⎪⎩
∂2u

∂t2
(t, x) = �u(t, x) + √

θu(t, x)Ẇ (x), t > 0, x ∈R
d,

u(0, x) = 1,
∂u

∂t
(0, x) = 0,

where θ > 0 and W = {W(ϕ);ϕ ∈ D(Rd)} is a (time-independent) Gaussian process, defined on a complete probability
space (�,F,P ), with mean zero and covariance:

E
[
W(ϕ)W(ψ)

]=
∫
Rd

Fϕ(ξ)Fψ(ξ)μ(dξ) =: 〈ϕ,ψ〉H,

with the spectral measure μ being assumed to be a non-negative and nonnegative definite tempered measure1 on Rd .
Here, Fϕ(ξ) = ∫

Rd e−iξ ·xϕ(x) dx denotes the Fourier transform. It is known that the Fourier transform of μ, denoted by

1A Schwarz distribution μ ∈ S ′(Rd ) is nonnegative definite if (μ,φ ∗ φ∗) ≥ 0 for every φ ∈ S(Rd ), where ∗ denotes the spatial convolution and

φ∗(x) = φ(−x); see [16, Section 3.1].
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γ , is also a nonnegative and nonnegative definite tempered measure. The solution is interpreted in the Skorohod sense,
as explained in Section 2 below. We will focus on the cases when d ≤ 3 and denote by G the corresponding fundamental
solution:

G(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2
1{|x|<t} if d = 1,

1

2π

1√
t2 − |x|2 1{|x|<t} if d = 2,

1

4πt
σt if d = 3,

(1.2)

where σt is the surface measure on the sphere {x ∈R
3; |x| = t} with | · | being the Euclidean norm in R

d .
The goal of this article is to derive sharp solvability conditions and the precise moment asymptotics of the Skorohod

solution to equation (1.1). The literature for the stochastic heat equation with Gaussian noise is immense. Here we point
out [6,7,9] and [21] for an incomplete list of references. But to the best of our knowledge, the investigations related to
the wave equation under the current setting seem to be new in the literature. Compared to the stochastic heat equation,
the main difficulty is the absence of the Feynman–Kac representation of the moments. The singularity of the wave kernel
especially when d = 3 also causes some technical difficulties. The method proposed in this paper turns out to be fairly
general, which can be used to study many other stochastic partial differential equations provided that the corresponding
fundamental solution is nonnegative and has a certain scaling property.

There are many references dedicated to the study of the stochastic wave equation with time-dependent spatially-
homogeneous Gaussian noise and possibly a Lipschitz non-linear term σ(u(t, x)) multiplying the noise. These investi-
gations started with Dalang’s seminal article [13] for the case d ≤ 3, and were extended to the case d ≥ 4 in Conus and
Dalang [12]. In the case when σ(u) = u, Mueller and Dalang [14] obtained exponential bounds for the p-th moments of
the solution in dimension d = 3. An exact formula for the second moment of the solution of the stochastic wave equation
with space-time white noise was obtained in Chen and Dalang [4], from which one easily obtains the large time asymp-
totics for the second moment. All these references handle the time-white noise. For time-colored noise, one may refer
to the recent works by Balan and Song [1,2]. The current work serves as the first necessary step to understand the exact
asymptotic property of the stochastic wave equation with more general, i.e., time-dependent, noises.

Typical examples of the noise Ẇ include the white noise, the Riesz kernel noise, fractional noise, a hybrid of these
noises, etc. In order to cover all these examples, we will work under the following three assumptions – Assumptions A,
B, C – exclusively:

Assumption A. Assume that:

(i) both μ and γ are absolutely continuous with respect to the Lebesgue measure;
(ii) for some α ∈ (0, d), γ satisfies the following scaling property:

(1.3) γ (cx) = c−αγ (x) for all c > 0, x ∈R
d ;

(iii) there exists a nonnegative function K on R
d such that

γ = K ∗ K,(1.4)

where “∗” refers to the spatial convolution.

Remark 1.1. Part (i) of Assumption A implies that there exists a nonnegative definite (possibly signed) function K

such that the decomposition (1.4) holds. Indeed, let ϕ(ξ) be the density of μ. It is nonnegative and hence
√

ϕ(ξ) is a well
defined function. Viewed as a nonnegative tempered measure, its inverse Fourier transform, denoted as K := F−1(

√
ϕ), is

a nonnegative definite (tempered) measure. Therefore, we have (1.4) in the sense of distributions. Moreover, the absolute
continuity of γ entails that K also admits a density. However, the existence of a nonnegative K is not immediate. Hence,
we list it as part (iii) of the assumption. Part (iii) is always satisfied for all examples that we are interested.

Assumption A excludes the white noise case, which will be treated separately in this paper in two cases: the sub-critical
case – Assumption B and the critical case – Assumption C. Formally, both Assumptions B and C below correspond to
Assumption A with μ(dξ) = (2π)−d dξ , α = d , and γ = K = δ0.

Assumption B. Assume that d ≤ 2, γ = δ0 (or equivalently μ(dξ) = (2π)−d dξ ).
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Assumption C. Assume that d = 3, γ = δ0 (or equivalently μ(dξ) = (2π)−3 dξ ).

Remark 1.2. Under Assumption A, the scaling property of γ implies that μ(dξ) = ϕ(ξ) dξ has the following scaling
property:

ϕ(cξ) = c−(d−α)ϕ(ξ) or equivalently μ(cA) = cαμ(A)(1.5)

for all c > 0, ξ ∈ R
d and A ∈ B(Rd). In the case of the white noise, i.e., under either Assumption B or C, the measure μ

has the scaling property:

μ(cA) = cdμ(A) for all c > 0,A ∈ B
(
R

d
)
.

Assumption A is satisfied by the following examples:

Example 1.3. γ (x) = |x|−α for some α ∈ (0, d). In this case, μ(dξ) = Cd,α|ξ |−(d−α) dξ and K(x) = βα,d |x|−(d+α)/2,
where

(1.6) Cd,α = π−d/22−α �((d − α)/2)

�(α/2)
and βα,d = π−d/4 �((d + α)/4)

�((d − α)/4)

√
�((d − α)/2)

�(α/2)
.

The heat equation with this noise was studied in Hu et al [20].

Example 1.4. γ (x) =∏d
i=1 |xi |−αi for some α1, . . . , αd ∈ (0,1). In this case, μ(dξ) =∏d

i=1(C1,αi
|ξi |−(1−αi) dξi) and

K(x) =∏d
i=1(βαi ,1|xi |−(1+αi)/2), where C1,αi

and βαi,1 are given by (1.6). The function γ satisfies the scaling relation
(1.3) with α =∑d

i=1 αi . In the parametrization αi = 2−2Hi with Hi ∈ (1/2,1), the noise W corresponds to the fractional
Brownian sheet with indices H1, . . . ,Hd . The heat equation with this noise was studied in Hu [19].

Example 1.5. In the case d = 3, one can construct another example by grouping coordinates and combining the previous
two examples, i.e. letting γ (x) = |x1|−α1 |(x2, x3)|−α2 for x = (x1, x2, x3) ∈ R

3, with α1 ∈ (0,1) and α2 ∈ (0,2). Then
μ(dξ) = C1,α1C2,α2 |ξ1|−(1−α1)|(ξ2, ξ3)|−(2−α2). The scaling property (1.3) is satisfied with α = α1 + α2 ∈ (0,3).

We introduce the following variational quantity: for any nonnegative definite measure f and θ > 0, define

(1.7) M(f, θ) = sup
g∈Fd

{〈
g2 ∗ f,g2〉1/2 − θ

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
,

where ∗ is the convolution, 〈·, ·〉 is the inner product in L2(Rd),

Fd = {
g ∈ W 1,2(

R
d
); ‖g‖L2(Rd ) = 1

}
and W 1,2(Rd) is the Sobolev space. This quantity is related to the large deviation results for the local time of stable
processes. See for instance [11] and the references therein.

We denote M = M(γ,1) and M(f ) = M(f,1). In particular, for d = 1, we have M(δ0) = (3/4)(1/6)1/3, which
follows by Lemma 7.2 of [10] with p = 2.

Throughout the article, for any p > 0, we use ‖ · ‖p to denote the Lp(�)-norm.
Here are the main results of this article.

Theorem 1.6. If either Assumption A holds with 0 < α < d ≤ 3 or Assumption B holds, then equation (1.1) has a unique
solution u(t, x) in Lp(�) for all p ≥ 2, t > 0 and x ∈R

d . Moreover, we have the following moment asymptotics:

(i) Under Assumption A with 0 < α < d ≤ 3, by setting

tp := (p − 1)1/(4−α)t,(1.8)

it holds that

lim
tp→∞ t

− 4−α
3−α

p log
∥∥u(t, x)

∥∥
p

= θ
1

3−α

(
1

2

) α
2(3−α) 3 − α

2

(
2M1/2

4 − α

) 4−α
3−α

.(1.9)
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In particular, by freezing an arbitrary p ≥ 2 in (1.9),

(1.10) lim
t→∞ t−

4−α
3−α logE

(∣∣u(t, x)
∣∣p)= p(p − 1)

1
3−α θ

1
3−α

(
1

2

) α
2(3−α) 3 − α

2

(
2M1/2

4 − α

) 4−α
3−α

,

and by freezing an arbitrary t > 0 in (1.9),

(1.11) lim
p→∞p− 4−α

3−α logE
(∣∣u(t, x)

∣∣p)= t
4−α
3−α θ

1
3−α

(
1

2

) α
2(3−α) 3 − α

2

(
2M1/2

4 − α

) 4−α
3−α

.

(ii) Under Assumption B, (1.9)–(1.11) are still true provided that all α’s and M’s in part (i) are replaced by d and
M(δ0), respectively.

The case when Ẇ (x) is white (i.e., γ (·) = δ0(·)) is of particular interest due to its root in physics and also due to the
recent investigation of the Kardar–Parisi–Zhang (KPZ) equation [23]. In the setting of parabolic equations, only the one-
dimensional equation run by white noise has a full-scale solvability. The two and higher dimensions have to be treated
with great care. The large-time asymptotic behaviour of the moments of the Skorohod solution of the parabolic Anderson
model with white noise in time has been stipulated as conjecture (1.19) in [6] (in arbitrary dimension d). As far as we
know, this conjecture remains an open problem.

Here we also like to mention the paper by Hairer and Labbé [18] on the solvability for a two-dimensional parabolic
Anderson equation with time-independent and space-white noise, where the pathwise solution is constructed after some
logarithmic renormalization. In the setting of hyperbolic equations, we have seen from Theorem 1.6 that the system
behaves “normally” in the case of two-dimensional white noise, namely, there exists an L2(�) solution for all t > 0 and
x ∈ R

2. Moreover, Theorem 1.7 below shows that in case of three-dimensional white noise, we only have short-time
existence of L2(�) solutions.

In order to state the next theorem, we first need to introduce some notation. Assume that d = α = 3. For any θ > 0 and
p ≥ 2, we define the critical time for the p-th moment as follows:

Tp = Tp(θ) :=
√

2

θ(p − 1)M(δ0)1/2
.(1.12)

Recall that the solution to (1.1) is interpreted in terms of the Wiener chaos expansion and if the solution u(t, x) exists in
L2(�), its second moment has to be equal to

E
(∣∣u(t, x)

∣∣2)=
∑
n≥0

θnn!∥∥f̃n(·, x; t)∥∥2
H⊗n < ∞;(1.13)

see Section 2 for the notation.

Theorem 1.7. Under Assumption C, we have the following two scenarios:

(i) If t < T2, then for all x ∈ R
d , the series in (1.13) converges. Hence, there exists a unique solution {u(t, x) : t ∈

(0, T2), x ∈ R
d} to (1.1) in L2(�). In general, for any p ≥ 2, there exists a unique solution {u(t, x) : t ∈ (0, Tp), x ∈

R
d} to (1.1) in Lp(�).

(ii) If t > T2, then for all x ∈ R
d , the series in (1.13) diverges. Hence, there is no L2(�)-solution to (1.1) whenever

t > T2.

The existence of the solution in Theorem 1.6 is proved in Theorem 3.1. The matching upper and lower bounds in
(1.9) are proved in Theorems 5.1 and 6.1, respectively. The two limits (1.10) and (1.11) are direct consequences of (1.9).
Theorem 1.7 is covered by part (iii) of both Theorems 4.1 and 5.1.

Remark 1.8. It is known that Dalang’s condition:

(1.14)
∫
Rd

1

1 + |ξ |2 μ(dξ) < ∞,

is the necessary and sufficient condition for the existence and uniqueness of the stochastic heat equation:

(1.15)
∂u

∂t
(t, x) = 1

2
�u(t, x) + u(t, x)Ẇ (x), t > 0, x ∈ R

d;u(0, x) = 1,
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with the same noise Ẇ as above. This is due to the fact that the Fourier transform of the heat kernel is nonnegative.
In contrast, the oscillatory nature of the Fourier transform of the wave kernel (see (1.21)) makes (1.14) only a sufficient
condition. Note that under Assumption A, Dalang’s condition (1.14) becomes α ∈ (0,2∧d). The existence and uniqueness
part of Theorem 1.6 leverages this oscillatory property and hence requires weaker conditions than (1.14).

Remark 1.9. Similar to part (i) of Theorem 1.6, under Assumption A, for all d ≥ 1 and α ∈ (0,2 ∧ d), it has been be
proved in Chen [6] and [7] that the solution to equation (1.15) satisfies: for any p ≥ 2,

(1.16) lim
t ′p→∞

(
t ′p
)− 4−α

2−α log
∥∥u(t, x)

∥∥
p

= θ
2

2−α
2 − α

4

(
4M

4 − α

) 4−α
2−α

,

where t ′p = t (p − 1)2/(4−α). In particular, by freezing p ≥ 2 in (1.16), we have that:

(1.17) lim
t→∞ t−

4−α
2−α logE

[
u(t, x)p

]= p(p − 1)
2

2−α θ
2

2−α
2 − α

4

(
4M

4 − α

) 4−α
2−α

.

Here we point out that the moment asymptotics in both [6] and [7] mainly target on the parabolic Anderson equations
with time-dependent Gaussian noise. Given the fact that the approach in [6] and [7] (and in other recent papers on the
asymptotics in the parabolic setting) is based on the Feynman–Kac moment representation

E
(∣∣u(t, x)

∣∣p)= E

(
exp

{
θ2

∑
1≤j<k≤p

∫ t

0

∫ t

0
γ0(s − r)γ

(
Bj (s) − Bk(r)

)
ds dr

})
,

the time-independent case is often viewed as the special case, as far as moment intermittency is concerned, of the time-
dependence setting by taking the time-covariance γ0(·) = 1.

Remark 1.10. In the case of the stochastic heat equation with more general noises including the noise that we study
here, characterizing the sharp blowup time for the p-th moment at the critical case has been recently studied by Chen et
al [8]; see Theorem 3.14, ibid. In the case of the stochastic wave equation, the difficulty is the lack of the Feynman–Kac
representation of the moments. Hence, here we are only able to establish the sharp transition for the second moment
instead of the general p-th moment, p ≥ 2. We conjecture that part (ii) of Theorem 1.7 is true for all p ≥ 2, that is, Tp in
(1.12) is the sharp transition time for the p-th moment for p ≥ 2 in the sense that⎧⎪⎨⎪⎩

lim sup
N→∞

∥∥uN(t, x)
∥∥

p
< ∞ if t < Tp(θ),

lim inf
N→∞

∥∥uN(t, x)
∥∥

p
= ∞ if t > Tp(θ),

(1.18)

with uN(t, x) := 1 +∑N
n=1 θn/2In(fn(·, x; t)); see (2.2) for the notation. Note that for any N < ∞ fixed, ‖uN(t, x)‖p <

∞ all t > 0 and x ∈ R
d (see Lemma 3.7).

Remark 1.11. The following representation plays a fundamental role in this paper thanks to the decomposition (1.4):

(1.19)
∥∥f̃n(·,0; t)∥∥2

H⊗n = 1

(n!)2

∫
(Rd )n

[∑
σ∈�n

∫
[0,t]n<

∫
(Rd )n

n∏
k=1

K(xk −yk)

n∏
k=1

G(sk − sk−1, yσ(k) −yσ(k−1)) dyds

]2

dx,

where f̃n(·, x; t) is the kernel appearing in the Wiener chaos expansion of the solution, �n is the set of permutations of
1, . . . , n, and we use convention that s0 = 0, and yσ(0) = 0. Note that the integral in (1.19) needs to be properly handled
when d = 3 because G is a measure, which has been done in this paper through mollification.

Remark 1.12. There are two approaches for the study of SPDEs driven by Gaussian noise: the Malliavin calculus ap-
proach based on the Itô–Skorohod integral, and the pathwise approach, which is related to the Stratonovich integral
and uses the regularity of the noise. In the case of the heat equation, it is possible to unify these approaches using the
Feynman–Kac formula (see [20]). A similar study is not available at the moment for the wave equation. Therefore, it
is unclear if the Skorohod solution that we investigate here coincides with the pathwise solution constructed using the
connection with the Anderson Hamiltonian (see [17,24,25]). The relationship between the Skorohod solution and the
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pathwise solution is a different topic which may be treated in a separate project. An example of a wave equation whose
solution exhibits finite-time blow-up can be found in [28].

Throughout this paper, the letter α is reserved for the scaling index in (1.3) and β for

β :=

⎧⎪⎪⎨⎪⎪⎩
4 − α

3 − α
under Assumption A;

4 − d

3 − d
under Assumption B.

(1.20)

Recall that in any dimension d ≥ 1, the Fourier transform of the fundamental solution is

FG(t, ·)(ξ) = sin(t |ξ |)
|ξ | , for all ξ ∈ C

d,(1.21)

which satisfies the following scaling property:

(1.22) FG(t, ·)(cξ) = 1

c
FG(ct, ·)(ξ) for all c > 0.

This article is organized as follows. In Section 2, we introduce some basic elements of Malliavin calculus (see Nualart
[27]), and present some large deviation results that will be used in this paper. Then in Section 3, we obtain solvability
conditions. The moment asymptotics for p = 2 in (1.10) is proved in Section 4. The upper and lower bounds for the
asymptotics in (1.10) are proved in Sections 5 and 6, respectively. Finally, one can find some auxiliary results in the
appendices.

2. Some preliminaries

In this section, we present some preliminaries and set up some notation.

2.1. Elements of Malliavin calculus

Let H be the completion of D(Rd) with respect to 〈·, ·〉H, where D(Rd) is the space of infinitely differentiable functions
on R

d with compact support. The map ϕ �→ W(ϕ) is an isometry from D(Rd) to L2(�), which can be extended to H.
Then {W(ϕ);ϕ ∈ H} is an isonormal Gaussian process, i.e. E[W(ϕ)W(ψ)] = 〈ϕ,ψ〉H for any ϕ,ψ ∈ H.

The space H contains distributions f ∈ S ′(Rd) such that Ff ∈ L2
C
(μ). Let |H| be the set of measurable functions

ϕ : Rd → R such that 〈|ϕ| ∗ γ, |ϕ|〉 < ∞. It is known that |H| ⊂ H. If μ is a constant multiple of the Lebesgue measure,
H coincides with L2(Rd).

We denote by δ the Skorohod integral with respect to W , and by Dom δ its domain. For any u ∈ Dom δ, we write

δ(u) =
∫
Rd

u(x)W(δx).

By definition, δ(u) is a random variable in L2(�). We refer the reader to Section 1.3 of [27] for the precise definition
of δ.

Definition 2.1. A random field u = {u(t, x); t ≥ 0, x ∈R
d} such that ‖u(t, x)‖2 < ∞ for all t ≥ 0 and x ∈ R

d is called a
mild solution to equation (1.1) if the random field {G(t − s, x − y)u(s, y) : s ∈ [0, t], y ∈ R

d} is Skorohod integrable for
each s ∈ [0, t] fixed and satisfies the following stochastic integral equation:

(2.1) u(t, x) = 1 + √
θ

∫ t

0

(∫
Rd

G(t − s, x − y)u(s, y)W(δy)

)
ds.

Intuitively, if the solution exists, it should be given by the series:

u(t, x) = 1 +
∑
n≥1

θn/2In

(
fn(·, x; t)),(2.2)
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where In : H⊗n → Hn is the multiple integral with respect to W and Hn is the n-th Wiener chaos space. If d ≤ 2, the
kernel fn(·, x; t) is an integrable function on (Rd)n given by

fn(x1, . . . , xn, x; t) =
∫

[0,t]n<
G(t − tn, x − xn) . . .G(t2 − t1, x2 − x1) dt

=
∫

[0,t]n<
G(s1, xn − x) . . .G(sn − sn−1, x1 − x2) ds,

(2.3)

where [0, t]n< = {(t1, . . . , tn) ∈ [0, t]n; t1 < · · · < tn}. It can be shown that fn(·, x; t) is finite.
If d = 3, fn(·, x; t) is a finite measure on (R3)n, given by:

fn(·, x; t) =
∫

[0,t]n<
G(t − tn, x − dxn)G(tn − tn−1, xn − dxn−1) . . .G(t2 − t1, x2 − dx1) dt.

We denote by f̃n(·, x; t) the symmetrization of fn(·, x; t) in the variables x1, . . . , xn. If d ≤ 2,

f̃n(x1, . . . , xn, x; t) = 1

n!
∑
ρ∈�n

fn(xρ(1), . . . , xρ(n), x; t)

= 1

n!
∑
ρ∈�n

∫
[0,t]n<

G(t − tn, x − xρ(n)) . . .G(t2 − t1, xρ(2) − xρ(1)) dt

and in particular, for x = 0,

(2.4) f̃n(x1, . . . , xn,0; t) = 1

n!
∑

σ∈�n

∫
[0,t]n<

G(s1, xσ(1)) . . .G(sn − sn−1, xσ(n) − xσ(n−1)) ds.

If d = 3, f̃n(·, x; t) is a measure with compact support. If d ≥ 4, fn(·, x; t) is a distribution whose Fourier transform
can be obtained via, by setting tn+1 = t ,

Ffn(·, x; t)(ξ1, . . . , ξn) = e−i(
∑n

j=1 ξj )·x
∫

[0,t]n<

n∏
k=1

FG(tk+1 − tk, ·)
(

k∑
j=1

ξj

)
dt.(2.5)

Relation (2.5) is true for any dimension d .
Setting s0 = 0, we have:

F f̃n(·, x; t)(ξ1, . . . , ξn) = e−i(
∑n

j=1 ξj )·x ∑
σ∈�n

∫
[0,t]n<

n∏
j=1

FG(sj − sj−1, ·)
(

n∑
k=j

ξσ(k)

)
ds.

The following result gives the existence and uniqueness of solution. Its proof follows by a standard procedure.

Theorem 2.2. Let d ≥ 1 be arbitrary. Fix any T ∈ (0,∞]. Suppose that fn(·, x; t) ∈H⊗n for any t ∈ (0, T ), x ∈ R
d and

n ≥ 1. Then equation (1.1) has a unique L2(�)-solution on (0, T ) × R
d if and only if the series in (2.2) converges in

L2(�) for any (t, x) ∈ (0, T ) ×R
d , which is equivalent to the series in (2.6) converges. In this case, the solution is given

by (2.2) with the second moment given by

E
(∣∣u(t, x)

∣∣2)=
∑
n≥0

θnn!∥∥f̃n(·, x; t)∥∥2
H⊗n , for any (t, x) ∈ (0, T ) ×R

d .(2.6)

In particular, the L2(�)-solution exists under Dalang’s condition:∫
Rd

1

1 + |ξ |2 μ(dξ) < ∞.
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2.2. Some large deviation results

In Chen [5] and Bass et al [3], it has been proved that

(2.7) lim
n→∞

1

n
log

1

(n!)2

∫
(Rd )n

[∑
σ∈�n

n∏
k=1

1

1 + |∑n
j=k ξσ(j)|2

]2

μ(dξ1) . . .μ(dξn) = logρ,

where

ρ = sup
‖h‖

L2(Rd )
=1

∫
Rd

[∫
Rd

h(ξ + η)h(η)√
1 + |ξ + η|2√1 + |η|2 dη

]2

μ(dξ).(2.8)

More precisely, the setting of μ(dξ) = (2π)−d dξ (under Assumption B) is obtained in [5, (2.1) and Theorem 2.1]
with p = 2 and ψ(·) = | · |2. In the subsequent paper [3], (2.7) was established for γ (x) = |x|−α with α ∈ (0, d) (or
μ(dξ) = Cd,α|ξ |−(d−α) dξ , where Cd,α is given by (1.6)); see Theorem 2.3 and Lemma 2.2 in [3]2 The proof of (2.7)
under the setting of [3] can be easily adapted to the setting described in Assumption A.

By Theorem 1.5 of [3], one can see that3 ρ = �
(4−α)/2
γ where �γ = M(γ,2). These results play an important role in

this paper.
The functional M(·, ·) has the following scaling property:

Lemma 2.3. Let f be an arbitrary nonnegative definite measure such that for some α < 4, f (cA) = cd−αf (A) for all
c > 0 and A ∈ B(Rd). In case f has a density, this scaling property becomes f (cx) = c−αf (x) for all x ∈ R

d . Then

M(�f, θ) = �
2

4−α θ− α
4−α M(f,1), for all � > 0 and θ > 0.(2.9)

In particular, when f = δ0 and d < 4, (2.9) still holds with α replaced by d .

This lemma is proved under slightly different settings in Lemmas B.2 and B.3 of Balan and Song [2]. We give the
proof below for readers’ convenience.

Proof. For any θ,� > 0, by the definition of M in (1.7), we see that

M(�f, θ) = sup
g∈Fd

{〈
g2 ∗ �f,g2〉1/2 − θ

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}

= θ sup
g∈Fd

{√
�

θ

〈
g2 ∗ f,g2〉1/2 − 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
.

Let g ∈ W 1,2(Rd). For any B > 0, by defining g̃(x) = B−d/2g(B−1x), one sees that the ‖ · ‖L2(Rd ) norm is pre-
served, i.e., ‖g‖L2(Rd ) = ‖g̃‖L2(Rd ). Notice that F g̃(ξ) = Bd/2Fg(Bξ), which implies that

∫
Rd |ξ |2|F g̃(ξ)|2 dξ =

B−2
∫
Rd |ξ |2|Fg(ξ)|2 dξ , or equivalently,∫

Rd

∣∣∇g̃(x)
∣∣2 dx = B−2

∫
Rd

∣∣∇g(x)
∣∣2 dx.

By the scaling property of f , we see that (g̃2 ∗ f )(x) = B−α(g2 ∗ f )(B−1x) and hence 〈g̃2 ∗ f, g̃2〉 = B−α〈g2 ∗ f,g2〉.
Combining these relations, we see that

M(�f, θ) = θ sup
g̃∈Fd

{√
�

θ
Bα/2 〈̃g2 ∗ f, g̃2〉1/2 − B2

2

∫
Rd

∣∣∇g̃(x)
∣∣2 dx

}
.

2There is small error in the statement of Lemma 2.2 of [3]: in relation (2.6) of [3], in the argument of Q, one has
∑n

j=k instead of
∑k

j=1.
3There is a small error in Theorem 1.5 of Bass et al [3] which states that ρ = (2π)−d�

2−α/2
α . The correct result is ρ = �

2−α/2
α . This error is due to

the fact that in the first line of equation (7.22), ibid., one should have (2π)−dp instead of (2π)−d(p+1) , since F(f p) = (2π)−d(p−1)(Ff )∗p .
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Hence, by making the following choice of B

√
�

θ
Bα/2 = B2 ⇐⇒ B =

(√
�

θ

) 2
4−α

and α �= 4,

we see that M has the desired scaling property (2.9). �

By the scaling property of M, namely, M(γ,2) = (1/2)
α

4−α M(γ,1), we have the following important relation:

ρ = [
(1/2)

α
4−α M

](4−α)/2 = (1/2)α/2M(4−α)/2.(2.10)

In the white noise case, one simply replaces α and M in (2.10) by d and M(δ0), respectively.

3. Solvability

The aim of this section is to prove the following theorem:

Theorem 3.1.

(i) Suppose that either Assumption A holds with 0 < α < d ≤ 3 or Assumption B holds. Then equation (1.1) has a
unique solution {u(t, x); t > 0, x ∈ R

d} and

(3.1) sup
(t,x)∈[0,T ]×Rd

E
(∣∣u(t, x)

∣∣p)< ∞ for all p ≥ 2 and T > 0.

(ii) Under Assumption C, for any p ≥ 2, equation (1.1) is well defined with finite p-th moments for all t ∈ (0, T ′
p) and

x ∈ R
d , where

T ′
p = 4π

θ(p − 1)
.(3.2)

We need some preparations before proving this theorem. Let us first introduce some notation. Recall equation (2.4).
For d ≤ 2, set

(3.3)

Ln(y1, . . . , yn) = n!
∫ ∞

0
e−t f̃n(y1, . . . , yn,0; t) dt

=
∑

σ∈�n

∫ ∞

0
e−t

∫
[0,t]n<

n∏
k=1

G(sk − sk−1, yσ(k) − yσ(k−1)) dsdt.

If d ≤ 2 and Assumption A holds, set for any t > 0 and x = (x1, . . . , xn) ∈ (Rd)n,

(3.4)

Hn(t,x) = n!
∫

(Rd )n

n∏
k=1

K(xk − yk)f̃n(y1, . . . , yn,0; t) dy

=
∑

σ∈�n

∫
[0,t]n<

∫
(Rd )n

n∏
k=1

K(xk − yk)

n∏
k=1

G(sk − sk−1, yσ(k) − yσ(k−1)) dyds,

where for the last line we used relation (2.4) for expressing f̃n(·;0, t). If Assumption B holds, set for any t > 0 and
x = (x1, . . . , xn) ∈ (Rd)n

Hn(t,x) = n!f̃n(x1, . . . , xn,0; t) =
∑

σ∈�n

∫
[0,t]n<

n∏
k=1

G(sk − sk−1, xσ(k) − xσ(k−1)) ds,

with s0 = 0, xσ(0) = 0. Similarly, if d = 3, for any ε > 0, set

Ln,ε(y1, . . . , yn) =
∑

σ∈�n

∫ ∞

0
e−t

∫
[0,t]n<

n∏
k=1

Gε(sk − sk−1, yσ(k) − yσ(k−1)) dsdt,(3.5)
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where Gε(t, ·) = G(t, ·) ∗ pε with pε(x) = (2πε)−d/2e−|x|2/(2ε). Moreover, if d ≤ 3, under Assumption A and C, denote
respectively

Hn,ε(t,x) =
∑

σ∈�n

∫
[0,t]n<

∫
(Rd )n

n∏
k=1

K(xk − yk)

n∏
k=1

Gε(sk − sk−1, yσ(k) − yσ(k−1)) dyds,

Hn,ε(t,x) =
∑

σ∈�n

∫
[0,t]n<

n∏
k=1

Gε(sk − sk−1, xσ(k) − xσ(k−1)) ds.

(3.6)

Remark 3.2. A key observation is that the mollification Gε(t, x) is a nonnegative function if and only if d ≤ 3. When
d ≤ 2, G is a function and there is no need for this mollification. We only use this mollification in the case d = 3. In
this case, G is a locally finite measure on R+ × R

3 that is singular with respect to the Lebesgue measure. Because the
nonnegativity property of Gε(t, x) is not valid for d ≥ 4, the results presented in this section cover only the case d ≤ 3.

If d ≤ 2, denote

L(x) =
∫ ∞

0
e−tG(t, x) dt and FL(ξ) =

∫ ∞

0
e−tFG(t, ·)(ξ) dt = 1

1 + |ξ |2 ,

and if d = 3, set

Lε(x) =
∫ ∞

0
e−tGε(t, x) dt and FLε(ξ) =

∫ ∞

0
e−tFGε(t, ·)(ξ) dt = e−(ε/2)|ξ |2

1 + |ξ |2 .

By change of variables, one sees that the Laplace transform of convolutions (in time) becomes product:

Ln(y1, . . . , yn) =
∑
σ∈Sn

L(yσ(1))L(yσ(2) − yσ(1)) . . .L(yσ(n) − yσ(n−1)), d ≤ 2,

Ln,ε(y1, . . . , yn) =
∑
σ∈Sn

Lε(yσ(1))Lε(yσ(2) − yσ(1)) . . .Lε(yσ(n) − yσ(n−1)), d = 3.

Hence,

(3.7)

FLn(ξ1, . . . , ξn) =
∑

σ∈�n

n∏
k=1

1

1 + |∑n
j=k ξσ(j)|2 , d ≤ 2,

FLn,ε(ξ1, . . . , ξn) =
∑

σ∈�n

e− ε
2

∑n
k=1 |ξσ(k)+···+ξσ(n)|2

n∏
k=1

1

1 + |∑n
j=k ξσ(j)|2 , d = 3.

Lemma 3.3. If d ≤ 2 and either parts (i) and (iii) of Assumption A hold, or Assumption B holds, then∫
(Rd )n

[∫ ∞

0
e−tHn(t,x) dt

]2

dx =
∫

(Rd )n

∣∣FLn(ξ1, . . . , ξn)
∣∣2μ(dξ1) . . .μ(dξn).(3.8)

If d = 3 and either parts (i) and (iii) of Assumption A hold, or Assumption C holds, then relation (3.8) holds with Hn and
FLn replaced by Hn,ε and FLn,ε , respectively.

Proof. It suffices to prove the result in the case when d ≤ 2 and parts (i) and (iii) of Assumption A hold. The white noise
case is proved in a similar way. Notice that by Fubini’s theorem,∫ ∞

0
e−tHn(t,x) dt

=
∑

σ∈�n

∫ ∞

0
e−t

∫
[0,t]n<

∫
Rnd

n∏
k=1

K(xk − yk)

n∏
k=1

G(sk − sk−1, yσ(k) − yσ(k−1)) dydsdt
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=
∫

(Rd )n

n∏
k=1

K(xk − yk)Ln(y1, . . . , yn) dy.

Hence,

∫
(Rd )n

[∫ ∞

0
e−tHn(t,x) dt

]2

dx =
∫

(Rd )n

[∫
(Rd )n

n∏
k=1

K(xk − yk)Ln(y1, . . . , yn) dy

]2

dx

=
∫

(Rd )n

∣∣FLn(ξ1, . . . , ξn)
∣∣2μ(dξ1) . . .μ(dξn),

where the last step is due to the Plancherel theorem and the fact that K ∗ K = γ . �

Next we prove the key expression (1.19) which was announced in the introduction.

Lemma 3.4. If d ≤ 2 and either parts (i) and (iii) of Assumption A hold or Assumption B holds, then

(3.9)
∥∥f̃n(·,0; t)∥∥2

H⊗n = 1

(n!)2

∫
(Rd )n

H 2
n (t,x) dx.

Proof. We treat only the case of Assumption A. The white noise case can be proved in a similar way. Writing γ (yk −y′
k) =∫

Rd K(yk − xk)K(y′
k − xk) dxk , we see that

∥∥f̃n(·,0; t)∥∥2
H⊗n =

∫
(Rd )n

∫
(Rd )n

n∏
k=1

γ
(
yk − y′

k

)
f̃n(y1, . . . , yn,0; t)f̃n

(
y′

1, . . . , y
′
n,0; t)dydy′

=
∫

(Rd )n

[∫
(Rd )n

n∏
k=1

K(yk − xk)f̃n(y1, . . . , yn,0; t) dy

]2

dx

=
∫

(Rd )n

[
1

n!Hn(t,x)

]2

dx. �

If f is a non-decreasing function on [0,∞), then the following reverse Cauchy–Schwarz inequality holds, which plays
a key role in our developments.

Lemma 3.5. If f : [0,∞) → [0,∞) is a non-decreasing function, then

2
∫ ∞

0
e−2t f 2(t) dt ≤

(∫ ∞

0
e−t f (t) dt

)2

.

Proof. Let τ and τ ′ be two independent random variables with exponential distribution of mean 1. Then τ ∧ τ ′ has an
exponential distribution with density g(t) = 2e−2t and(∫ ∞

0
e−t f (t) dt

)2

= E
[
f (τ)

]
E
[
f
(
τ ′)]= E

[
f (τ)f

(
τ ′)]≥ E

[
f 2(τ ∧ τ ′)]= 2

∫ ∞

0
e−2t f 2(t) dt. �

Denote

(3.10) Tn :=
∫

(Rd )n

[∑
σ∈�n

n∏
k=1

1

1 + |∑n
j=k ξσ(j)|2

]2

μ(dξ1) . . .μ(dξn).

Lemma 3.6. Under the assumptions of Theorem 1.6 or Theorem 1.7, we have that

C′
μ :=

∫
Rd

(
1

1 + |ξ |2
)2

μ(dξ) < ∞ and Tn ≤ (n!)2(C′
μ

)n
.(3.11)
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Proof. Recall that ϕ is the density function of μ. By the scaling property of ϕ in (1.5),∫
Rd

(
1

1 + |ξ |2
)2

μ(dξ) =
∫
Rd

(
1

1 + |ξ |2
)2

ϕ(ξ) dξ =
∫
Rd

(
1

1 + |ξ |2
)2

|ξ |−(d−α)ϕ

(
ξ

|ξ |
)

dξ.

By the spherical substitution,∫
Rd

(
1

1 + |ξ |2
)2

|ξ |−(d−α)ϕ

(
ξ

|ξ |
)

dξ =
(∫

S1

ϕ(ξ)σ (dξ)

)∫ ∞

0

(
1 + ρ2)−2

ρ−(d−α)ρd−1 dρ

=
(∫

S1

ϕ(ξ)σ (dξ)

)∫ ∞

0

(
1 + ρ2)−2

ρα−1 dρ,

where S1 is the unit sphere in R
d and σ(dξ) is the uniform sphere measure. On the other hand, let B1 be the unit ball in

R
d . The fact that μ is tempered implies that μ(B1) < ∞. In addition,

μ(B1) =
∫

B1

ϕ(ξ) dξ =
(∫

S1

ϕ(ξ)σ (dξ)

)∫ 1

0
ρ−(d−α)ρd−1 dρ = α−1

∫
S1

ϕ(ξ)σ (dξ).

Hence, ∫
Rd

(
1

1 + |ξ |2
)2

μ(dξ) = αμ(B1)

∫ ∞

0

(
1 + ρ2)−2

ρα−1 dρ < ∞,(3.12)

as α < 4. Therefore, the first relation in (3.11) holds as α < 4.
As for the second relation in (3.11), we have the following:

(3.13)

Tn ≤ n!
∫

(Rd )n

∑
σ∈�n

n∏
k=1

(
1

1 + |∑n
j=k ξσ(j)|2

)2

μ(dξ1) . . .μ(dξn)

= (n!)2
∫

(Rd )n

n∏
k=1

(
1

1 + |∑n
j=k ξj |2

)2

μ(dξ1) . . .μ(dξn)

≤ (n!)2
[

sup
η∈Rd

∫
Rd

(
1

1 + |ξ + η|2
)2

μ(dξ)

]n

= (n!)2
[∫

Rd

(
1

1 + |ξ |2
)2

μ(dξ)

]n

,

where the last line follows by Lemma 4.1 of Balan and Song [1] or Lemma 3.1 of Chen [7] when Assumption A holds,
and holds trivially when either Assumption B or C holds. �

In the case when Assumption A holds, by the scaling property (1.22) of FG,

(3.14)
∥∥f̃n(·,0; t)∥∥2

H⊗n = t (4−α)n
∥∥f̃n(·,0;1)

∥∥2
H⊗n .

Lemma 3.7. If Assumption A holds with 0 < α < d ≤ 3, then

(3.15)
∫ ∞

0
e−t
∥∥f̃n(·,0; t)∥∥2

H⊗n dt ≤ 2(4−α)n 1

(n!)2
Tn ≤ (

24−αC′
μ

)n
< ∞,

and consequently, fn(·,0; t) ∈ H⊗n for any t > 0. Relation (3.15) also holds under either Assumption B or C with α

replaced by d .

Proof. We first assume that Assumption A holds. Note that (3.15) implies that ‖fn(·,0; t)‖H⊗n < ∞ for almost all t > 0.
Due to (3.14), this has to hold for all t > 0. Hence, fn(·,0; t) ∈ H⊗n for all t > 0. It remains to prove the first inequality
in (3.15). For this, we treat separately the cases d ≤ 2 and d = 3.
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Case 1. Assume that d ≤ 2. By the scaling property of FG in (1.22), we see that

F f̃n(·,0; ct)(ξ1, . . . , ξn) = c2nF f̃n(·,0; t)(cξ1, . . . , cξn), for all c > 0.

Using the above scaling property and the scaling property of μ (see (1.5)), we have:∫ ∞

0
e−t
∥∥f̃n(·,0; t)∥∥2

H⊗n dt =
∫ ∞

0
e−t

∫
(Rd )n

∣∣F f̃n(·,0; t)(ξ1, . . . , ξn)
∣∣2μ(dξ1) . . .μ(dξn) dt

= 2(4−α)n

∫ ∞

0
2e−2t

∥∥f̃n(·,0; t)∥∥2
H⊗n dt

= 2(4−α)n 1

(n!)2

∫
(Rd )n

(∫ ∞

0
2e−2tH 2

n (t,x) dt

)
dx,

where for the last line, we used (3.9). Since the function t �→ Hn(t,x) is non-negative and non-decreasing, we can apply
Lemma 3.5 to see that∫ ∞

0
e−t
∥∥f̃n(·,0; t)∥∥2

H⊗n dt ≤ 2(4−α)n 1

(n!)2

∫
(Rd )n

(∫ ∞

0
e−tHn(t,x) dt

)2

dx

= 2(4−α)n 1

(n!)2

∫
(Rd )n

∣∣FLn(ξ1, . . . , ξn)
∣∣2μ(dξ1) . . .μ(dξn)

= 2(4−α)n 1

(n!)2
Tn

where for the second last line we used Lemma 3.3 and for the last line we used the form of FLn(ξ1, . . . , ξn) given by
(3.7).

Case 2. Assume that d = 3. Consider the kernel

(3.16) fn,ε(y1, . . . , yn, x; t) =
∫

[0,t]n<

n∏
k=1

Gε(tk+1 − tk, yk+1 − yk) dt,

with tn+1 = t and yn+1 = x. Then

(3.17) Ffn,ε(·, x; t)(ξ1, . . . , ξn) = exp

(
−ε

2

n∑
k=1

|ξ1 + · · · + ξk|2
)
Ffn(·, x; t)(ξ1, . . . , ξn).

If f̃n,ε(·, x; t) be the symmetrization of fn,ε(·, x; t), then

F f̃n,ε(·, x; t)(ξ1, . . . , ξn) = 1

n!
∑
ρ∈�n

exp

(
−ε

2

n∑
k=1

|ξρ(1) + · · · + ξρ(k)|2
)

×Ffn(·, x; t)(ξρ(1), . . . , ξρ(n)).

Note that

(3.18) lim
ε→0+

F f̃n,ε(·, x; t)(ξ1, . . . , ξn) =F f̃n(·, x; t)(ξ1, . . . , ξn).

The function F f̃n,ε(·,0; t) has the following scaling property:

F f̃n,ε(·,0; ct)(ξ1, . . . , ξn) = c2nF f̃n,ε/c2(·,0; t)(cξ1, . . . , cξn), for any c > 0.

This leads to: ∥∥f̃n,ε(·, t)
∥∥2
H⊗n = t (4−α)n

∥∥f̃n,ε/t2(·,0;1)
∥∥2
H⊗n
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and ∫ ∞

0
e−t
∥∥f̃n,ε(·,0; t)∥∥2

H⊗n dt = 2(4−α)n

∫ ∞

0
2e−2t

∥∥f̃n,ε/4(·,0; t)∥∥2
H⊗n dt.

Similar to (3.9), by replacing G by Gε , we have:

(3.19)
∥∥f̃n,ε(·,0; t)∥∥2

H⊗n = 1

(n!)2

∫
(Rd )n

H 2
n,ε(t,x) dx.

Since the function t �→ Hn,ε(t,x) is non-negative and non-decreasing, by the same argument as in Case 1, we see that∫ ∞

0
e−t
∥∥f̃n,ε(·,0; t)∥∥2

H⊗n dt = 2(4−α)n 1

(n!)2

∫
(Rd )n

(∫ ∞

0
2e−2tH 2

n,ε/4(t,x) dt

)
dx

≤ 2(4−α)n 1

(n!)2

∫
(Rd )n

(∫ ∞

0
e−tHn,ε/4(t,x) dt

)2

dx

= 2(4−α)n 1

(n!)2

∫
(Rd )n

∣∣FLn,ε/4(ξ1, . . . , ξn)
∣∣2μ(dξ1) . . .μ(dξn),

where the last line is due to Lemma 3.3. By bounding from above the exponential term in the expression of FLn,ε in (3.7)
by 1, we see that

∫ ∞

0
e−t
∥∥f̃n,ε(·,0; t)∥∥2

H⊗n dt ≤ 2(4−α)n 1

(n!)2

∫
(Rd )n

[∑
σ∈�n

n∏
k=1

1

1 + |∑n
j=k ξσ(j)|2

]2

μ(dξ1) . . .μ(dξn)

= 2(4−α)n 1

(n!)2
Tn.

Using Fatou’s lemma and (3.18),∫ ∞

0
e−t
∥∥f̃n(·,0; t)∥∥2

H⊗n dt =
∫ ∞

0
e−t

∫
(Rd )n

∣∣F f̃n(·,0; t)(ξ1, . . . , ξn)
∣∣2μ(dξ1) . . .μ(dξn)

≤ lim inf
ε→0+

∫ ∞

0
e−t

∫
(Rd )n

∣∣F f̃n,ε(·,0; t)(ξ1, . . . , ξn)
∣∣2μ(dξ1) . . .μ(dξn)

= lim inf
ε→0+

∫ ∞

0
e−t
∥∥f̃n,ε(·,0; t)∥∥2

H⊗n dt ≤ 2(4−α)n 1

(n!)2
Tn.

This completes the proof of (3.15) under Assumption A.
Finally, the case when Assumption B (resp. Assumption C) holds can be proved similarly to Case 1 (resp. Case 2) with

α and μ(dξ) replaced by d and (2π)−d dξ , respectively. This completes the proof of Lemma 3.7. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first assume that Assumption A holds with 0 < α < d ≤ 3. By Theorem 2.2, we need to prove
that

∑
n≥0 θnn!‖f̃n(·,0; t)‖2

H⊗n < ∞, for all t > 0. By the scaling property (3.14), provided that (4 −α)n+ 1 > 0 (which
is true for all n ≥ 1 since α < 4),

(3.20)
∫ ∞

0
e−t
∥∥f̃n(·,0; t)∥∥2

H⊗n dt = �
(
(4 − α)n + 1

)∥∥f̃n(·,0;1)
∥∥2
H⊗n .

By (3.20), Lemma 3.7 and Stirling’s formula, there is some constant c1 > 0 depending only on α (see (4.5) for a justifi-
cation) such that

∥∥f̃n(·,0;1)
∥∥2
H⊗n ≤ (24−αC′

μ)n

�((4 − α)n + 1)
≤ cn

1

(24−αC′
μ)n

(n!)4−α
.
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Using property (3.14) again, we infer that

∑
n≥0

θnn!∥∥f̃n(·,0; t)∥∥2
H⊗n ≤

∑
n≥0

θnt(4−α)ncn
1

(24−αC′
μ)n

(n!)3−α
< ∞.

Relation (3.1) follows by noticing that for all p ≥ 2, by Minkowski’s inequality and the hypercontractivity property (see
p. 62 of Nualart [27])

(3.21)

∥∥u(t, x)
∥∥

p
≤
∑
n≥0

θn/2(p − 1)n/2(n!)1/2
∥∥f̃n(·, x; t)∥∥H⊗n

≤
∑
n≥0

θn/2(p − 1)n/2t
4−α

2 nc
n/2
1

(24−αC′
μ)n/2

(n!) 3−α
2

,

which is finite for all t ≥ 0 since α < d ≤ 3.
We now study the white noise case (Assumptions B or C). In this case, the scaling property (3.14) still holds with α

replaced by d , i.e.

(3.22)
∥∥f̃n(·,0; t)∥∥2

H⊗n = t (4−d)n
∥∥f̃n(·,0;1)

∥∥2
H⊗n .

Hence, the case of Assumption B is proved exactly as above with α replaced by d . Similarly, in the case when As-
sumption C holds, by the same arguments as above with α replaced by 3, we see that

∥∥f̃n(·,0;1)
∥∥2
H⊗n ≤ (2(2π)−3C′

Leb)
n

�(n + 1)
= (2(2π)−3C′

Leb)
n

n! ,

where C′
Leb is defined in (3.11). For any p ≥ 2, from (3.21), we see that∥∥u(t, x)

∥∥
p

≤
∑
n≥0

θn/2(p − 1)n/2tn/2(2(2π)−3C′
Leb

)n/2
,

which is convergent provided that t < T ′
p := 4π3

θ(p−1)C′
Leb

. Finally, applying (3.12) to the setting μ(dξ) = (2π)−3 dξ and

α = d = 3 we have C′
Leb = π2. With this, the proof of Theorem 3.1 is complete. �

4. The case p = 2

The aim of this section is to prove the following result:

Theorem 4.1.

(i) If Assumption A holds with 0 < α < d ≤ 3, then for all x ∈ R
d ,

lim
t→∞ t−

4−α
3−α logE

(∣∣u(t, x)
∣∣2)= θ

1
3−α

(
1

2

) α
2(3−α)

(3 − α)

(
2M1/2

4 − α

) 4−α
3−α

.(4.1)

(ii) Relation (4.1) holds also under Assumption B, with α and M replaced by d and M(δ0), respectively.
(iii) Under Assumption C, let T2(θ) be the constant defined in (1.12). Then for any x ∈R

d and θ > 0, it holds that

∑
n≥0

θnn!∥∥f̃n(·, x; t)∥∥2
H⊗n

{
< ∞ if t < T2(θ),

= ∞ if t > T2(θ).
(4.2)

Remark 4.2. The radius of convergence T2 obtained in part (iii) of Theorem 4.1 is bounded from below by T ′
2 obtained

in Theorem 3.1; see Lemma 5.2 below. Hence, the solvability condition obtained in part (iii) of Theorem 4.1 improves
part (iii) of Theorem 3.1.

We first prove a lemma.
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Lemma 4.3. Under Assumption A with 0 < α < d ≤ 3, it holds that

lim
n→∞

1

n
log
(
�
(
(4 − α)n + 1

)∥∥f̃n(·,0;1)
∥∥2
H⊗n

)= log
[
24−α2− α

2 M 4−α
2
]

and(4.3)

lim
n→∞

1

n
log
(
(n!)4−α

∥∥f̃n(·,0;1)
∥∥2
H⊗n

)= log

[(
2

4 − α

)4−α

2− α
2 M 4−α

2

]
.(4.4)

Both relations (4.3) and (4.4) hold also under either Assumption B or C, with α and M replaced by d and M(δ0),
respectively.

Proof. It suffices to prove (4.3). Relation (4.4) follows from (4.3), using the fact that

lim
n→∞

1

n
log

�(an + 1)

(n!)a = a loga for any a > 0,(4.5)

which is a consequence of Stirling’s formula for the Gamma function. The upper bound in (4.3) a direct consequence of
Lemma 3.7 and the scaling property (3.14) (resp. (3.22)) of ‖f̃n(·, x; t)‖2

H⊗n under Assumption A (resp. Assumption B
or C). Indeed, under Assumption A, by (3.15) and (3.20),

�
(
(4 − α)n + 1

)∥∥f̃n(·,0;1)
∥∥2
H⊗n ≤ 2(4−α)n 1

(n!)2
Tn,

where Tn is given by (3.10). Using (2.7) and (2.10), we obtain the desired upper bound:

lim sup
n→∞

1

n
log
(
�
(
(4 − α)n + 1

)∥∥f̃n(·,0;1)
∥∥2
H⊗n

)≤ log 24−α + log
(
2− α

2 M 4−α
2
)
.

Under either Assumption B or C, one simply replaces α and M in the above inequality by d and M(δ0), respectively.
The lower bound in (4.3) is a consequence of the following inequality:

(4.6)
1

(n!)2
Tn ≤ �

(
4 − α

2
n + 1

)2∥∥f̃n(·,0;1)
∥∥2
H⊗n .

Indeed, another application of Stirling’s formula shows that

�

(
(4 − α)n

2
+ 1

)2

∼ �
(
(4 − α)n + 1

)
2−(4−α)nCn,

where Cn = 2−1(4 − α)1/2(2πn)1/2. Using (4.6), we infer that

cα

2(4−α)n

Cn

1

(n!)2
Tn ≤ �

(
(4 − α)n + 1

)∥∥f̃n(·,0;1)
∥∥2
H⊗n ,

where cα > 0 is a constant depending on α. Using (2.7) and the fact that 1
n

logCn → 0 as n → ∞, we obtain the desired
lower bound:

lim inf
n→∞

1

n
log
(
�
(
(4 − α)n + 1

)∥∥f̃n(·,0;1)
∥∥2
H⊗n

)≥ log 24−α + logρ.

Then plugging the formula (2.10) for ρ proves (4.3). Therefore, it remains to prove (4.6). For this, we first assume that
Assumption A holds. We treat separately the cases d ≤ 2 and d = 3 below.

Case 1. Assume that d ≤ 2. For any t > 0 and t̃ > 0, define

Jn(t, t̃) =
∫

(Rd )n
Hn(t,x)Hn(t̃,x) dx,

where Hn(t, x) is defined in (3.4). With this notation, relation (1.19) becomes:

(4.7)
∥∥f̃n(·,0; t)∥∥2

H⊗n = 1

(n!)2

∫
(Rd )n

H 2
n (t,x) dx = 1

(n!)2
Jn(t, t).
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Hence, Jn satisfies the same scaling property as ‖f̃n(·,0; t)‖2
H⊗n :

(4.8) Jn(t, t) = t (4−α)nJn(1,1).

Let τ and τ̃ be independent exponential random variables of mean 1. By Lemma 3.3,

E
[
Jn(τ, τ̃ )

]=
∫ ∞

0

∫ ∞

0
e−te−t̃ Jn(t, t̃) dt dt̃ =

∫
(Rd )n

[∫ ∞

0
e−tHn(t,x) dt

]2

dx

=
∫

(Rd )n

∣∣FLn(ξ1, . . . , ξn)
∣∣2μ(dξ1) . . .μ(dξn) = Tn.

On the other hand, by Cauchy–Schwarz inequality and (4.8),

Jn(t, t̃) ≤ Jn(t, t)
1/2Jn(t̃ , t̃)

1/2 = t (4−α)n/2 t̃ (4−α)n/2Jn(1,1)

for any t > 0 and t̃ > 0. Hence,

Tn = E
[
Jn(τ, τ̃ )

]≤ E
[
τ (4−α)n/2]

E
[̃
τ (4−α)n/2]Jn(1,1) = �

(
4 − α

2
n + 1

)2

Jn(1,1)

= �

(
4 − α

2
n + 1

)2

(n!)2
∥∥f̃n(·,0;1)

∥∥2
H⊗n .

Case 2. Assume that d = 3. Note that the proof below is in fact valid for any d ≥ 3. Instead of the approximation fn,ε

which was used for the proof of (3.15) in case d = 3, here we use another approximation, namely

f ′
n,ε(·, x; t) = fn(·, x; t) ∗ p⊗n

ε ,

where p⊗n
ε (x1, . . . , xn) =∏n

k=1 pε(xk) and pε(x) = (2πε)−d/2e−|x|2/(2ε). It is known that f ′
n,ε(·, x; t) is a C∞-function

on R
nd , which belongs to S ′(Rnd) and has Fourier transform given by

Ff ′
n,ε(·, x; t)(ξ1, . . . , ξn) = exp

(
−ε

2

n∑
k=1

|ξk|2
)
Ffn(·, x; t)(ξ1, . . . , ξn).(4.9)

Let f̃ ′
n,ε(·, x; t) be the symmetrization of f ′

n,ε(·, x; t). Then

F f̃ ′
n,ε(·, x; t)(ξ1, . . . , ξn) = exp

(
−ε

2

n∑
k=1

|ξk|2
)
F f̃n(·, x; t)(ξ1, . . . , ξn).

Hence, |F f̃ ′
n,ε(·, x; t)(ξ1, . . . , ξn)| ≤ |F f̃n(·, x; t)(ξ1, . . . , ξn)| and

(4.10)
∥∥f̃ ′

n,ε(·,0; t)∥∥2
H⊗n ≤ ∥∥f̃n(·,0; t)∥∥2

H⊗n for any ε > 0.

By (4.10) and Fatou’s lemma, limε→0+ ‖f̃ ′
n,ε(·,0; t)‖2

H⊗n = ‖f̃n(·,0; t)‖2
H⊗n . Similar to (3.9),

∥∥f̃ ′
n,ε(·,0; t)∥∥2

H⊗n = 1

(n!)2

∫
(Rd )n

[
H ′

n,ε(t,x)
]2

dx,

where H ′
n,ε(t,x) = n! ∫

(Rd )n

∏n
k=1 K(xk − yk)f̃

′
n,ε(y1, . . . , yn,0; t) dy. Similar to Lemma 3.3,∫

(Rd )n

[∫ ∞

0
e−tH ′

n,ε(t,x) dt

]2

dx =
∫

(Rd )n

∣∣FL′
n,ε(ξ1, . . . , ξn)

∣∣2μ(dξ1) . . .μ(dξn),

where L′
n,ε(y1, . . . , yn) = n! ∫∞

0 e−t f̃ ′
n,ε(y1, . . . , yn,0; t) dt and

FL′
n,ε(ξ1, . . . , ξn) = exp

(
−ε

2

n∑
k=1

|ξk|2
) ∑

σ∈�n

n∏
k=1

1

1 + |∑n
j=k ξσ(j)|2 .
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Denote

J ′
n,ε(t, t̃) =

∫
(Rd )n

H ′
n,ε(t,x)H ′

n,ε(t̃ ,x) dx.

With this notation, ‖f̃ ′
n,ε(·,0; t)‖2

H⊗n = 1
(n!)2 J ′

n,ε(t, t). By (4.10), it follows that

(4.11) J ′
n,ε(t, t) ≤ Jn(t, t) for any ε > 0,

where Jn(t, t) = (n!)2‖f̃n(·,0; t)‖2
H⊗n . Let τ and τ̃ be independent exponential random variables of mean 1. Then

E
[
J ′

n,ε(τ, τ̃ )
]=

∫
(Rd )n

[∫ ∞

0
e−tH ′

n,ε(t,x) dt

]2

dx

=
∫

(Rd )n
exp

(
−ε

n∑
k=1

|ξk|2
)[∑

σ∈�n

n∏
k=1

1

1 + |∑n
j=k ξσ(j)|2

]2

μ(dξ1) . . .μ(dξn)

=: T ′
n,ε.

By the Cauchy–Schwarz inequality, (4.11) and the scaling property of Jn,

J ′
n,ε(t, t̃) ≤ J ′

n,ε(t, t)
1/2J ′

n,ε(t̃ , t̃ )
1/2 ≤ Jn(t, t)

1/2Jn(t̃, t̃ )
1/2 = t

4−α
2 nt̃

4−α
2 nJn(1,1).

Hence, T ′
n,ε = E[J ′

n,ε(τ, τ̃ )], which is bounded from above by

�

(
4 − α

2
n + 1

)2

Jn(1,1) = �

(
4 − α

2
n + 1

)2

(n!)2
∥∥f̃n(·,0;1)

∥∥2
H⊗n .

Relation (4.6) follows since limε→0+ T ′
n,ε = Tn by the dominated convergence theorem.

Under Assumption B (resp. C), one can carry out the same arguments as those in Case 1 (resp. Case 2) with α replaced
by d and μ(dξ) by (2π)−d dξ . �

Proof of Theorem 4.1. Provided that there is a L2(�) solution u(t, x), thanks to the scaling property (3.14), we should
have

(4.12)

E
(∣∣u(t, x)

∣∣2)=
∑
n≥0

θnn!∥∥f̃n(·,0; t)∥∥2
H⊗n =

∑
n≥0

θnn!t (4−α)n
∥∥f̃n(·,0;1)

∥∥2
H⊗n

=
∑
n≥0

θn t(4−α)n

(n!)3−α
Rn with Rn := (n!)4−α

∥∥f̃n(·,0;1)
∥∥2
H⊗n .

For (i), part (i) of Theorem 3.1 guarantees the existence of an L2(�)-solution for all t > 0 and x ∈ Rd . We apply
Lemma A.2 with xn = θn 1

(n!)3−α and the above Rn. By (4.4), we know that

lim
n→∞

1

n
logRn = logR, with R :=

(
2

4 − α

)4−α

2− α
2 M 4−α

2 .(4.13)

So, for deriving the asymptotic behaviour of t−β logE(|u(t, x)|2) (for suitable β > 0), we can replace Rn by Rn. More
precisely, if we can find β > 0 such that

(4.14) lim
t→∞

1

tβ
log

∑
n≥0

θn 1

(n!)3−α
Rnt(4−α)n = A

then

lim
t→∞

1

tβ
logE

(∣∣u(t, x)
∣∣2)= lim

t→∞
1

tβ
log

∑
n≥0

θn 1

(n!)3−α
Rnt

(4−α)n = A.
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To find the suitable value β , we use Lemma A.3. More precisely,

1

(θR)1/(3−α)
lim

t→∞
1

t (4−α)/(3−α)
log

∑
n≥0

θnRnt(4−α)n

(n!)3−α
= lim

t→∞
1

(θRt4−α)1/(3−α)
log

∑
n≥0

(θRt4−α)n

(n!)3−α

= lim
t→∞

1

t1/(3−α)
log

∑
n≥0

tn

(n!)3−α
= 3 − α.

This shows that if we choose β = 4−α
3−α

(see (1.20)), then relation (4.14) holds with A = (3−α)(θR)1/(3−α). Summarizing,
we obtain:

lim
t→∞

1

tβ
logE

(∣∣u(t, x)
∣∣2)= (3 − α)(θR)1/(3−α).

The conclusion of part (i) follows using the definition of R in (4.13). Part (ii) can be proved in the same way as above
with α and M replaced by d and M(δ0), respectively.

As for (iii), by the scaling property (3.14),∑
n≥0

θnn!∥∥f̃n(·, x; t)∥∥2
H⊗n =

∑
n≥0

θntnRn with Rn = n!∥∥f̃n(·,0;1)
∥∥2
H⊗n .

By Lemma 4.3, limn→∞ 1
n

logRn = logR with R = 2−1/2M(δ0)
1/2. By the Cauchy-Hadamard theorem, it follows that

∑
n≥0

θntnRn

{
< ∞ if θt < R−1,

= ∞ if θt > R−1.

This proves part (iii) of Theorem 4.1. �

5. Upper bound

In this section, we use the L2(�) asymptotics obtained in Theorem 4.1 and the hypercontractivity property given by
Theorem B.1 to prove the following theorem:

Theorem 5.1.

(i) Under Assumption A with 0 < α < d ≤ 3, it holds that

lim sup
tp→∞

t
− 4−α

3−α
p log

∥∥u(t, x)
∥∥

p
≤ θ

1
3−α

(
1

2

) α
2(3−α) 3 − α

2

(
2M1/2

4 − α

) 4−α
3−α

.(5.1)

where tp and M are defined in (1.8) and (1.7), respectively.
(ii) Inequality (5.1) holds under Assumption B with α and M replaced by d and M(δ0), respectively.

(iii) Under Assumption C, for any p ≥ 2, equation (1.1) has a solution in Lp(�) for all t ∈ (0, Tp) and x ∈ R
d , where

Tp is defined in (1.12). Moreover, Tp ≥ T ′
p , where T ′

p is defined in (3.2).

Proof. (i) For any λ > 0, we denote by uλ the solution of equation (1.1) with θ replaced by λ. Denote u = uθ . By Lê’s
moment comparison theorem given by Theorem B.1,∥∥u(t, x)

∥∥
p

≤ ∥∥u(p−1)θ (t, x)
∥∥

2, for all p ≥ 2.

By the scaling property (3.14),∥∥u(p−1)θ (t, x)
∥∥2

2 =
∑
n≥0

n!θn(p − 1)n
∥∥f̃n(·, x; t)∥∥2

H⊗n =
∑
n≥0

n!θn
∥∥f̃n

(·, x; (p − 1)
1

4−α t
)∥∥2

H⊗n

= ∥∥u((p − 1)1/(4−α)t, x
)∥∥2

2.
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This leads to the following important moment inequality:

(5.2)
∥∥u(t, x)

∥∥
p

≤ ∥∥u((p − 1)1/(4−α)t, x
)∥∥

2 = ∥∥u(tp, x)
∥∥

2,

which implies that

lim sup
tp→∞

t
− 4−α

3−α
p log

∥∥u(t, x)
∥∥

p
≤ lim sup

tp→∞
t
− 4−α

3−α
p log

∥∥u(tp,0)
∥∥

2.

Then an application of Theorem 4.1 proves (5.1).
Part (ii) can be proved in the same way as above with α and M replaced by d and M(δ0). We will not repeat this here.
To prove part (iii), we note that relation (5.2) continues to hold under Assumption C, with α = d = 3 and tp = (p−1)t .

The right-hand side of (5.2) is equal to the square root of the series in (4.2) with t replaced by tp . We note that tp < T2(θ)

is equivalent to t < Tp(θ), recalling the definition (1.12) of Tp(θ). Finally, the property Tp ≥ T ′
p is proved in Lemma 5.2

below. �

Lemma 5.2. When d = 3, it holds that M(δ0) ≤ 1/(2π4). As a consequence, for any θ > 0 and p > 1,

Tp :=
√

2

θ(p − 1)
√
M(δ0)

≥ 2π2

θ(p − 1)
≥ 4π

θ(p − 1)
=: T ′

p.(5.3)

Proof. Let us find the optimal constant C > 0 such that M(δ0) ≤ C, or equivalently,(∫
R3

g4(x) dx

)1/2

≤ C + 1

2

∫
R3

∣∣∇g(x)
∣∣2 dx, for all g ∈ Fd .

Fix an arbitrary g ∈Fd . By Hölder inequality,(∫
R3

g4(x) dx

)1/2

≤
(∫

R3
g(x)2 dx

)1/4(∫
R3

g(x)6 dx

)1/4

= ‖g‖3/2
L6(R3)

.

By the Sobolev inequality with the optimal constant (see, e.g., [15] for references therein),

‖g‖L6(R3) ≤ A‖∇g‖L2(R3), with A = 3−1/2
(

2

π

)2/3

.(5.4)

By setting y = ‖∇g‖1/2
L2(R3)

, the problem reduces to find the constant C such that

ϕ(y) := A3/2y3 − 1

2
y4 ≤ C for all y ≥ 0.(5.5)

Elementary computations show that the critical points of ϕ are y1 = y2 = 0 and y3 = (3/2)A3/2. Hence, inequality (5.5) is
equivalent to ϕ(0) ≥ 0 and ϕ(y3) ≥ 0, from which one finds the value of C, namely, C = ϕ(y3) = (27A6)/32 = 1/(2π4).
This proves the first inequality in (5.3). The second inequality in (5.3) clear. �

6. Lower bound

The goal of this section is to prove the following theorem:

Theorem 6.1. Under Assumption A with 0 < α < d ≤ 3, it holds that

(6.1) lim inf
tp→∞ t

− 4−α
3−α

p log
∥∥u(t, x)

∥∥
p

≥ θ
1

3−α

(
1

2

) α
2(3−α) 3 − α

2

(
2M1/2

4 − α

) 4−α
3−α

,

where tp and M are defined in (1.8) and (1.7), respectively. Relation (6.1) also holds under Assumption B, with α and
M replaced by d and M(δ0), respectively.
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This theorem will be proved at the end of this section. We need first introduce some notation and prove some auxiliary
results. For any φ ∈ L2

C
(μ), let

Wn(t,φ) :=
∫

[0,t]n<

∫
(Rd )n

n∏
k=1

φ(ξk)

n∏
k=1

FG(sk − sk−1, ·)(ξk + · · · + ξn)μ(dξ1) . . .μ(dξn) ds,(6.2)

with s0 = 0. We first give conditions under which Wn(t,φ) is well defined:

Lemma 6.2. If the measure μ satisfies the first relation in (3.11), then Wn(t,φ) is well defined for any d ≥ 1, t > 0, and
φ ∈ L2

C
(μ). Moreover,

∫ ∞

0
e−tWn(t, φ) dt =

∫
(Rd )n

n∏
k=1

φ(ξk)

n∏
k=1

1

1 + |ξk + · · · + ξn|2 μ(dξ1) . . .μ(dξn).(6.3)

Proof. By Fubini’s theorem, the left-hand side of (6.3) is equal to∫
(Rd )n

n∏
k=1

φ(ξk)

∫ ∞

0
e−t

∫
[0,t]n<

n∏
k=1

FG(sk − sk−1, ·)(ξk + · · · + ξn) dsdtμ(dξ1) . . .μ(dξn),

which is equal to, by the change of variables t − sn = u and sk − sk−1 = uk for k = 1, . . . , n,∫
(Rd )n

n∏
k=1

φ(ξk)

(∫ ∞

0
e−u du

) n∏
k=1

(∫ ∞

0
e−ukFG(uk, ·)(ξk + · · · + ξn) duk

)
μ(dξ1) . . .μ(dξn).

Noticing that
∫∞

0 e−tFG(t, ·)(ξ) dt = ∫∞
0 e−t sin(t |ξ |)

|ξ | dt = 1/(1 + |ξ |2) for all ξ ∈C
d , the above quantity is equal to

∫
(Rd )n

n∏
k=1

φ(ξk)

n∏
k=1

1

1 + |ξk + · · · + ξn|2 μ(dξ1) . . .μ(dξn).

Finally, one can apply the Cauchy–Schwarz inequality and then use the same arguments as those leading to (3.13) to see
that the above quantity is finite. �

Our interest in the quantity Wn(t,φ) stems from the following proposition.

Proposition 6.3. For any f ∈H, t > 0, and p,q > 1 with 1/p + 1/q = 1, it holds that

∥∥u(t,0)
∥∥

p
≥ exp

{
−1

2
(q − 1)‖f ‖2

H

}∣∣∣∣∑
n≥0

θn/2Wn(t,Ff )

∣∣∣∣.
As a consequence, the series |∑n≥0 θn/2Wn(t,Ff )| converges provided that ‖u(t,0)‖p < ∞, which is the case if As-
sumption A holds with 0 < α < d ≤ 3 or Assumption B holds (see Theorem 3.1).

Proof. It suffices to prove the inequality. For any distribution f ∈H, let

Zf = exp

(
W(f ) − 1

2
‖f ‖2

H

)
=
∑
n≥0

1

n!In

(
f ⊗n

)
.

Here f ⊗n is the distribution in S ′(Rnd) whose Fourier transform is given by: Ff ⊗n(ξ1, . . . , ξn) =∏n
k=1 Ff (ξk). If f is

a function, then f ⊗n is the function f ⊗n(x1, . . . , xn) =∏n
k=1 f (xk).

Using Hölder’s inequality and the fact that W(f ) ∼ N(0,‖f ‖2
H), we obtain:

(6.4)
∣∣E[u(t,0)Zf

]∣∣≤ ∥∥u(t,0)
∥∥

p
‖Zf ‖q = ∥∥u(t,0)

∥∥
p

exp

{
1

2
(q − 1)‖f ‖2

H

}
.
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By the orthogonality of the Wiener chaos spaces,

(6.5) E
[
u(t,0)Zf

]=
∑
n≥0

θn/2 1

n!E
[
In

(
fn(·,0; t))In

(
f ⊗n

)]=
∑
n≥0

θn/2〈f̃n(·,0; t), f ⊗n
〉
H⊗n .

Using the definition of f̃n(·,0; t), we see that

(6.6)

〈
f̃n(·,0; t), f ⊗n

〉
H⊗n =

∫
(Rd )n

n∏
k=1

Ff (ξk)F f̃n(·, x; t)(ξ1, . . . , ξn)μ(dξ1) . . .μ(dξn)

= 1

n!
∑

σ∈�n

∫
[0,t]n<

dt
∫

(Rd )n
μ(dξ1) . . .μ(dξn)

n∏
k=1

Ff (ξk)

×
n∏

k=1

FG(tk+1 − tk, ·)(ξσ(1) + · · · + ξσ(k))

=
∫

[0,t]n<
dt
∫

(Rd )n
μ(dξ1) . . .μ(dξn)

n∏
k=1

Ff (ξk)

×
n∏

k=1

FG(tk+1 − tk, ·)(ξ1 + · · · + ξk)

= Wn(t,Ff ),

where tn+1 = t and the last step is due to the change of variables s1 = t − tn, . . . , sn = t − t1 and ξ ′
1 = ξn, . . . , ξ

′
n = ξ1.

The conclusion follows from (6.4), (6.5) and (6.6). �

If Assumption A holds, for any f ∈ H and t > 0, let ft be the time-scaled distribution, which is a distribution in
S ′(Rd) whose Fourier transform is

Fft (ξ) = t (2−α)(β−1)Ff
(
t1−βξ

)= t
2−α
3−α Ff

(
t1/(α−3)ξ

)
for all ξ ∈C

d .(6.7)

where β is given by (1.20). Note that ft ∈ H. If f is a function, then ft is also a function with the scaling property:

ft (x) = t (2−α+d)(β−1)f
(
tβ−1x

)= t
2−α+d

3−α f
(
t1/(3−α)x

)
, for all x ∈R

d .

If Assumption B holds, ft is defined similarly with α replaced by d and β given by (1.20). Regarding ft , we have the
following scaling result.

Lemma 6.4. Suppose that parts (i) and (ii) of Assumption A hold with α < 4 or Assumption B holds. Then for any f ∈H
and τ > 0,

‖fτ‖2
H = τβ‖f ‖2

H and Wn(t,Ffτ ) = Wn

(
tτ β−1,Ff

)
.

Proof. We treat only the case of Assumption A. The white noise case can be proved in a similar way. Using the change
of variable ξ ′ = τ 1−βξ and the scaling property of μ, we see that:

‖fτ‖2
H = τ 2(2−α)(β−1)

∫
Rd

∣∣Ff
(
τ 1−βξ

)∣∣2μ(dξ) = τ (β−1)(4−α)‖f ‖2
H.

The desired relation follows since (β − 1)(4 − α) = β . The second relation is proved by the change of variable ξ ′
k =

τ 1−βξk , applying the scaling properties of μ and FG in (1.5) and (1.22), respectively, and then anther change of variable
s′
k = τβ−1sk as follows:

Wn(t,Ffτ ) = τn(2−α)(β−1)

∫
[0,t]n<

ds
∫

(Rd )n
μ(dξ1) . . .μ(dξn)
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×
n∏

k=1

Ff
(
τ 1−βξk

) n∏
k=1

FG(sk − sk−1, ·)(ξk + · · · + ξn)

= τ 2n(β−1)

∫
[0,t]n<

ds
∫

(Rd )n
μ(dξ1) . . .μ(dξn)

×
n∏

k=1

Ff (ξk)

n∏
k=1

FG(sk − sk−1, ·)
(
τβ−1(ξk + · · · + ξn)

)
= τn(β−1)

∫
[0,t]n<

ds
∫

(Rd )n
μ(dξ1) . . .μ(dξn)

×
n∏

k=1

Ff (ξk)

n∏
k=1

FG
(
τβ−1(sk − sk−1), ·

)
(ξk + · · · + ξn)

= Wn

(
tτ β−1,Ff

)
.

This proves the lemma. �

Proposition 6.5. If Assumption A holds with 0 < α < d ≤ 3 or Assumption B holds, then for any f ∈ H, t > 0, and
p,q > 1 with 1/p + 1/q = 1, it holds that

(6.8)
∥∥u(t,0)

∥∥
p

≥ exp

{
−1

2
tβp ‖f ‖2

H

}∣∣∣∣∑
n≥0

θn/2Wn

(
tβp ,Ff

)∣∣∣∣,
where tp is defined in (1.8).

Proof. For any f ∈ H, an application of Proposition 6.3 to fτ with τ = (p − 1)t , followed by Lemma 6.4, shows that∥∥u(t,0)
∥∥

p
≥ exp

{
−1

2
(q − 1)(p − 1)β tβ‖f ‖2

H

}∣∣∣∣∑
n≥0

θn/2Wn

(
t
([p − 1]t)β−1

,Ff
)∣∣∣∣.

This proves (6.8) because (q − 1)(p − 1)β tβ = (p − 1)β−1tβ = (p − 1)
1

3−α tβ = t
β
p . �

Note that Wn(t,φ) may be negative. Suppose that Assumption A holds. In order to get rid of the absolute value in
(6.8), we need to identify f ∈ H for which Wn(t,Ff ) is nonnegative. For this purpose, we will need to both restrict our
dimensions to d ≤ 3 and restrict H to the following space

H+ := {f ∈ H : f is a nonnegative and nonnegative definite function}.(6.9)

With these restrictions, by the Plancherel theorem, we see that

Wn(t,Ff ) =
∫

[0,t]n<

∫
(Rd )n

n∏
k=1

(f ∗ γ )(xk)

n∏
k=1

G(sk − sk−1, xk − xk−1) dxds

=: Un(t, f ), for all f ∈ H+ and d ≤ 3,

(6.10)

with s0 = 0 and x0 = 0. Since
∏n

k=1 G(sk − sk−1, xk − xk−1) with (s1, . . . , sn) fixed is a nonnegative measure with
compact support on (Rd)n, which is true only for d ≤ 3, and since the other product (x1, . . . , xn) �→∏n

k=1(f ∗ γ )(xk) is
a nonnegative function on (Rd)n, the dx-integral in (6.10) is nonnegative, i.e,

0 ≤ Wn(t,Ff ) = Un(t, f ) < ∞, for all f ∈ H+, n ≥ 1, t > 0 and d ≤ 3,(6.11)

where the finiteness is a consequence of Proposition 6.5. Relations (6.10) and (6.11) continue to hold under Assumption B,
in which case

Un(t, f ) :=
∫

[0,t]n<

∫
(Rd )n

n∏
k=1

f (xk)

n∏
k=1

G(sk − sk−1, xk − xk−1) dxds.
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Now let us define

Wn(t) = sup
f ∈H;‖f ‖H=1

Wn(t,Ff ) and Un(t) = sup
f ∈H+;‖f ‖H=1

Un(t, f ).(6.12)

Then, when d ≤ 3, we have that

Wn(t) ≥ sup
f ∈H+;‖f ‖H=1

Wn(t,Ff ) = Un(t) ≥ 0.

Theorem 6.6. Suppose that Assumption A holds with 0 < α < d ≤ 3. If τ is an exponential random variable of mean 1,
then

lim inf
n→∞

1

n
logE

[
Un(τ)

]≥ log
(
2− α

4 M 4−α
4
)
.(6.13)

Relation (6.13) also holds under Assumption B with α and M replaced by d and M(δ0), respectively.

Proof. We treat only the case when Assumption A holds. The white noise case can be proved in a similar way. The proof
follows using arguments similar to those in Section 3 of Bass et al [3]. Notice that

E
[
Un(τ)

]=
∫ ∞

0
e−tUn(t) dt ≥ sup

f ∈H+;‖f ‖H=1

∫ ∞

0
e−tUn(t, f ) dt.(6.14)

Fix an arbitrary f ∈ H+ with ‖f ‖H = 1 and set φ = Ff . Since f is nonnegative and nonnegative definite, we see that
φ is also nonnegative and nonnegative definite (hence symmetric). Moreover, ‖φ‖L2(μ) = ‖f ‖H = 1. By (6.11), we can
replace the Un(t, f ) in (6.14) by Wn(t,φ). Then we apply Lemma 6.2 to the dt integral to see that

E
[
Un(τ)

]≥
∫

(Rd )n

n∏
k=1

φ(ξk)

n∏
k=1

1

1 + |ξk + · · · + ξn|2 μ(dξ1) . . .μ(dξn).(6.15)

Following the same arguments as those in Bass, Chen and Rosen [3], one can prove that (see Appendix C for more
details):

(6.16) lim inf
n→∞

1

n
log

∫
(Rd )n

n∏
k=1

φ(ξk)

n∏
k=1

1

1 + |ξk + · · · + ξn|2 μ(dξ1) . . .μ(dξn) ≥ logρ(φ),

where

ρ(φ) = sup
‖h‖

L2(Rd )
=1

∫
Rd

φ(ξ)

[∫
Rd

h(ξ + η)h(η)√
1 + |ξ + η|2√1 + |η|2 dη

]
μ(dξ).(6.17)

Since both φ and μ are nonnegative, the supremum in (6.17) is obtained at some nonnegative h. Hence, in the follow-
ing, we may assume that h is a nonnegative function. Hence, we see that any f ∈H+ with ‖f ‖H = 1,

lim inf
n→∞

1

n
logE

[
Un(τ)

]≥ logρ(Ff ).

We claim that

sup
f ∈H+;‖f ‖H=1

ρ(Ff ) = sup
f ∈H;‖f ‖H=1

ρ(Ff ) = ρ1/2,(6.18)

where ρ is defined in (2.8). Then an application of (2.10) proves (6.13).
It remains to prove (6.18). Notice that for any h ∈ L2(Rd), h(ξ)√

1+|ξ |2 is also in L2(Rd). Hence the following function is

well defined:

g(x) := gh(x) = (2π)d/2F−1
(

h(·)√
1 + | · |2

)
(x).
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A first observation is that g is not only in L2(Rd) but also in W 1,2(Rd) ⊆ L2(Rd) with ‖g‖W 1,2(Rd ) = 1. Indeed,

‖g‖2
W 1,2(Rd )

= 1

(2π)d

∫
Rd

(
1 + |ξ |2)∣∣Fg(ξ)

∣∣2 dξ =
∫
Rd

∣∣h(ξ)
∣∣2 dξ = 1.

Note that F(|g|2) = H ∗ H̃ where H(ξ) = h(ξ)/
√

1 + |ξ |2, since

(H ∗ H̃ )(ξ) =
∫
Rd

h(ξ + η)√
1 + |ξ + η|

h(η)√
1 + |η| dη = 1

(2π)d

∫
Rd

Fg(ξ + η)Fg(η)dη

= 1

(2π)d
(Fg ∗ F̃g)(ξ) =F

(|g|2)(ξ),

using the fact that F̃g =Fg (because h is real) and the notation f̃ (x) = f (−x). If h ≥ 0, then ν(dξ) = (H ∗ H̃ )(ξ) dξ is
a non-negative tempered measure (since H ∗ H̃ is bounded by ‖h‖2

2), and hence, by the Bochner–Schwartz theorem, |g|2
is non-negative-definite. Hence, if h ≥ 0, then |g|2 ∈H+.

The supremum ρ(Ff ) defined in (6.17) can be written as:

ρ(Ff ) = sup
‖h‖

L2(Rd )
=1,h≥0

∫
Rd

Ff (ξ)F
(|gh|2

)
(ξ)μ(dξ)

= sup
‖h‖

L2(Rd )
=1,h≥0

∫
Rd

(f ∗ γ )(x)|gh|2(x) dx

= sup
‖h‖

L2(Rd )
=1,h≥0

〈
f, |gh|2

〉
H.

Then we see that

sup
f ∈H;‖f ‖H=1

ρ(Ff ) = sup
‖h‖

L2(Rd )
=1,h≥0

sup
f ∈H;‖f ‖H=1

〈
f, |gh|2

〉
H = sup

‖h‖
L2(Rd )

=1,h≥0

〈
f ∗

h , |gh|2
〉
H

where the optimal function is f ∗
h = C|gh|2 with C = ‖|gh|2‖−1

H . Since f ∗
h ∈ H+, we have:

sup
f ∈H;‖f ‖H=1

ρ(Ff ) = sup
f ∈H+;‖f ‖H=1

ρ(Ff ) = sup
‖h‖

L2(Rd )
=1,h≥0

〈
f ∗

h , |gh|2
〉
H.

Relation (6.18) follows noting that

〈
f ∗

h , |gh|2
〉
H = ‖|gh|2‖H =

{∫
Rd

∣∣F(|gh|2
)
(ξ)
∣∣2μ(dξ)

}1/2

=
{∫

Rd

[∫
Rd

h(ξ + η)√
1 + |ξ + η|2

h(η)√
1 + |η|2 dη

]2

μ(dξ)

}1/2

.
�

The next result gives the scaling property of Wn and Un.

Lemma 6.7. Under Assumption A with α < 4, we have that Wn(t) = t
4−α

2 nWn(1). Moreover, when d ≤ 3, Un(t) =
t

4−α
2 nUn(1). This property also holds under Assumption B with α replaced by d .

Proof. We consider only the case of Assumption A. It suffices to prove the case of Wn(t). For any f ∈ H, denote
φ =Ff ∈ L2(μ). Using the scaling properties of μ and FG in (1.5) and (1.22), respectively, we see that for any c > 0,∥∥φ(c−1·)∥∥2

L2(μ)
= cα‖φ‖2

L2(μ)
and Wn

(
t, φ

(
c−1·))= c−(2−α)nWn(ct, φ).

We use these properties for c = t−1. Then ‖tα/2φ(t ·)‖2
L2(μ)

= ‖φ‖2
L2(μ)

and Wn(t,φ(t ·)) = tn(2−α)Wn(1, φ). We mul-

tiply the previous relation by tnα/2. Using the fact that Wn(t, cφ) = cnWn(t, φ) for any c > 0 and φ ∈ L2(μ), we

obtain: Wn(t, t
α/2φ(t ·)) = t

4−α
2 nWn(t, φ). Finally, the lemma is proved by taking the supremum over all f ∈ H with

‖f ‖H = 1. �
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Lemma 6.8. Under Assumption A with 0 < α < d ≤ 3, it holds that

lim inf
n→∞

1

n
log
(
(n!) 4−α

2 Un(1)
)≥ log

[(
2

4 − α

) 4−α
2

2− α
4 M 4−α

4

]
.(6.19)

Relation (6.19) holds also under Assumption B with α and M replaced by d and M(δ0), respectively.

Proof. Let τ denote an exponential random variable of mean one. By the scaling property of Un given by Lemma 6.7,
we have:

E
[
Un(τ)

]= E
(
τ

4−α
2 n
)
Un(1) = �

(
4 − α

2
n + 1

)
Un(1).

Using Theorem 6.6, we obtain:

lim inf
n→∞

1

n
log

(
�

(
4 − α

2
n + 1

)
Un(1)

)
≥ log

(
2− α

4 M 4−α
4
)
.

An application of (4.5) proves the lemma. �

Lemma 6.9. Under Assumption A with 0 < α < d ≤ 3, for all a, θ > 0, there exists a constant c1 = c1(α,M, a, θ) > 0
such that, by setting nt = [c1t], it holds that

lim inf
t→∞

1

t
log
(
ant θnt /2Unt (t)

)≥ (a
√

θ)
2

4−α 2− α
2(4−α)M1/2.(6.20)

Relation (6.20) holds also under Assumption B with α and M replaced by d and M(δ0), respectively.

Proof. Let ε > 0 be arbitrary. By Lemma 6.8, there exists Nε ∈N such that for all n ≥ Nε , (n!) 4−α
2 Un(1) ≥ en(logR′−ε) =

(R′)ne−nε , where

R′ =
(

2

4 − α

) 4−α
2

2− α
4 M 4−α

4 .

Fix some c > 0 and set nt := [ct]. Note that nt ≥ Nε for any t ≥ tε := (Nε + 1)/c. For any t ≥ tε ,

ant θnt /2Unt (t) = ant θnt /2Unt (1)t
4−α

2 nt ≥ (
a
√

θR′)nt 1

(nt !) 4−α
2

t
4−α

2 nt e−nt ε.(6.21)

Since limt→∞ t−1nt = c, we deduce that

lim inf
t→∞

1

t
log
(
ant θnt /2Unt (t)

)= c lim inf
t→∞

1

nt

log
(
ant θnt /2Unt (t)

)=: I (nt ).(6.22)

Now by (6.21), we see that

I (nt ) ≥ c lim inf
t→∞

1

nt

log

((
a
√

θR′)nt 1

(nt !) 4−α
2

t
4−α

2 nt

)
− cε

= c log
(
a
√

θR′)+ c lim inf
t→∞

1

nt

log

((
t

nt

) 4−α
2 nt n

4−α
2 nt

t

(nt !) 4−α
2

)
− cε

= c log
(
a
√

θR′)− c
4 − α

2
log c + c

4 − α

2
lim inf
t→∞

1

nt

log
n

nt
t

nt ! − cε

= c log
(
a
√

θR′)− c
4 − α

2
log c + c

4 − α

2
− cε,

where the last equality is due to Stirling’s formula. Let ε → 0. Relation (6.20) follows by maximizing over c. The optimal
c is (a

√
θR′)2/(4−α). �
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We are now ready to give the proof of the desired lower bound:

Proof of Theorem 6.1. We consider only the case of Assumption A. The white noise case can be proved in a similar
way. We return to Proposition 6.5. In relation (6.8), we take the supremum over all f ∈ H+ with ‖f ‖H = a > 0. Using
the fact that Wn(t,φ) = anWn(t,φ/a) for any φ ∈ L2(μ) and the nonnegativity in (6.11), for any c > 0, we have that

∥∥u(t,0)
∥∥

p
≥ exp

{
−1

2
tβp a2

}
sup

f ∈H+;‖f ‖H=a

∑
n≥0

θn/2Wn

(
tβp ,Ff

)
= exp

{
−1

2
tβp a2

}
sup

f ∈H+;‖f ‖H=1

∑
n≥0

anθn/2Wn

(
tβp ,Ff

)
≥ exp

{
−1

2
tβp a2

}
sup

f ∈H+;‖f ‖H=1
ant θnt /2Unt

(
tβp , f

)
= exp

{
−1

2
tβp a2

}
ant θnt /2Unt

(
tβp
)
,

where nt = [ctβp ]. By choosing c to be the constant in Lemma 6.9, we see that

lim inf
tp→∞

1

t
β
p

log
∥∥u(t,0)

∥∥
p

≥ −1

2
a2 + (a

√
θ)

2
4−α 2− α

2(4−α)M1/2 =: h(a).

We now maximize over a > 0. More precisely, let b = θ
1

4−α 2− α
2(4−α)M1/2. The maximum of the function h(a) = − 1

2a2 +
ba

2
4−α , a > 0 is attained at the point a∗ = ( 2b

4−α
)

4−α
2(3−α) and the maximum value of h is:

h
(
a∗)= (3 − α)(4 − α)−

4−α
3−α 2

1
3−α b

4−α
3−α .

Plugging the value b proves the theorem. �

Appendix A: Exponential behaviour of power series

In this part we examine the asymptotic behaviour of some power series, measured on the exponential scale. The first
result is a useful tool for comparing two power series. Its proof follows using the same arguments as those in the proof of
Theorem 1.3 of Balan and Song [2].

Lemma A.1. If (an)n≥0 and (bn)n≥0 are two sequences of positive real numbers such that

lim inf
n→∞

1

n
log

bn

an

≥ logρ and lim inf
t→∞

1

tp
log

∑
n≥0

ant
n ≥ A

for some ρ > 0, p > 0 and A ∈ R, then lim inft→∞ 1
tp

log
∑

n≥0 bnt
n ≥ ρpA. The same statement remains valid if we

replace (lim inf,≥) by (lim sup,≤) or (lim,=).

The next lemma is an application of the previous result. It says that, if R
1/n
n ≈ R as n → ∞, then we can replace Rn

by Rn when deriving the exponential asymptotic behaviour of the power series
∑

n≥0 xnRnt
n.

Lemma A.2. If (Rn)n≥0 and (xn)n≥0 are two sequences of positive real numbers such that

lim inf
n→∞

1

n
logRn ≥ logR and lim inf

t→∞
1

tp
log

∑
n≥0

xnR
ntn ≥ A

for some R > 0, p > 0 and A ∈ R, then lim inft→∞ t−p log
∑

n≥0 xnRnt
n ≥ A. The same statement remains valid if we

replace (lim inf,≥) by (lim sup,≤) or (lim,=).
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Proof. The lemma is proved by an application of Lemma A.1 with an = xnR
n and bn = xnRn, and the fact that

lim infn→∞ 1
n

log Rn

Rn = lim infn→∞ 1
n

logRn − logR ≥ 0. �

The next lemma is about the asymptotic property of the Mittag-Leffler function [29].

Lemma A.3. For any γ > 0, limt→∞ t−1/γ log
∑

n≥0(n!)−γ tn = γ .

Proof. We start by looking at the similar result with (n!)γ replaced by �(γ n + 1):

lim
t→∞

1

t1/γ

∑
n≥0

tn

�(γ n + 1)
= lim

t→∞
1

t

∑
n≥0

tγ n

�(γ n + 1)
= 1,

where the last equality is due to the asymptotic property of the Mittag-Leffler function; see Theorem 1.3 on p. 32 and
Theorem 1.7 on p. 35 of [29]. This lemma is proved by an application of (4.5) and Lemma A.1 with an = 1

�(γ n+1)
,

bn = 1
(n!)γ and p = 1/γ . �

Appendix B: Moment comparison using hypercontractivity

This section gives the moment comparison result of Khoa Lê [26]. This result was stated in [26] for the Parabolic Anderson
Model with a special Gaussian noise, but Lê’s proof is in fact valid in a much more general case. We present this proof
here, including some of the details which are missing from [26].

Let W = {W(ϕ);ϕ ∈ H} be an isonormal Gaussian process, associated to a Hilbert space H. Assume that either one
of the following conditions hold:

(i) H consists of functions (or distributions) on R+ ×R
d , i.e. W is time-dependent; and

(ii) H consists of functions (or distributions) on R
d , i.e. W is time-independent.

Let L be a second-order pseudo-differential operator of R+ ×R
d and uθ be the solution of the SPDE:

(B.1) Lu(t, x) = √
θu(t, x)Ẇ , t > 0, x ∈R

d

with (deterministic) initial condition. By definition, the (mild Skorohod) solution to (B.1) is an adapted square-integrable
process uθ = {uθ (t, x); t > 0, x ∈R

d} which satisfies

uθ (t, x) = J0(t, x) + √
θ

∫ t

0

∫
Rd

G(t − s, x − y)uθ (s, y)W(δs, δy),

if the noise W is time-dependent, respectively

uθ (t, x) = J0(t, x) + √
θ

∫ t

0

∫
Rd

G(t − s, x − y)uθ (s, y)W(δy)ds,

if the noise W is time-independent, provided that these integrals are well-defined. Here W(δs, δy) (respectively W(δy))
denotes the Skorohod integral with respect to W , G is the fundamental solution of L on R+ ×R

d , and J0 is the solution
of the deterministic equation Lu = 0 on R+ ×R

d , with the same initial condition as (B.1).

Theorem B.1. If for any θ > 0, equation (B.1) has a unique solution uθ = {uθ (t, x); t > 0, x ∈R
d} and E(|uθ (t, x)|p) <

∞ for any t > 0, x ∈ R
d and p > 1, then

(B.2)
∥∥up−1

q−1 θ
(t, x)

∥∥
q

≤ ∥∥uθ (t, x)
∥∥

p
for any 1 < p ≤ q.

In particular, ∥∥uθ (t, x)
∥∥

p
≤ ∥∥u(p−1)θ (t, x)

∥∥
2 for any p ≥ 2.
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Proof. The proof is based on Mehler’s formula; see for instance, (1.67) of [27] or (4.11) of [22]. First, we need to
introduce the framework for this result, as presented in Section 1.4 of Nualart [27]. Suppose that W is defined on a
complete probability space (�,F,P), where F is generated by W . Let W ′ = {W ′(ϕ);ϕ ∈H} be a copy of W , defined on
(�′,F ′,P′), where F ′ is generated by W ′. Using the projection maps, we redefine W and W ′ on (�×�′,F×F ′,P×P

′),
so that W and W ′ are independent.

For any τ > 0 and ϕ ∈ H, let

Zτ (ϕ) = e−τW(ϕ) +
√

1 − e−2τW ′(ϕ).

Then Zτ = {Zτ (ϕ);ϕ ∈ H} is also an isonormal Gaussian process, defined on � × �′.
For any F -measurable function F : � → R, there exists a measurable map ψF : RH → R such that F = ψF (W). Let

(Tτ )τ≥0 be the Ornstein–Uhlenbeck semigroup on L2(�). By Mehler’s formula, for any τ > 0 and F ∈ L2(�)

Tτ (F ) = E
′[ψF (Zτ )

]
P-a.s.,

where E
′ denotes the expectation with respect to P

′. We apply this formula to F = uθ (t, x). We denote ψuθ (t,x) = ψθ,t,x .
Then uθ (t, x) = ψθ,t,x(W) and

(B.3) Tτ

(
uθ (t, x)

)= E
′[ψθ,t,x(Zτ )

]
P-a.s.

Since {ψθ,t,x(W); t ≥ 0, x ∈ R
d} is a solution to (B.1), {ψθ,t,x(Zτ ); t ≥ 0, x ∈ R

d} is a solution of

(B.4) Lu(t, x) = √
θu(t, x)Żτ , t > 0, x ∈ R

d,

with the same initial condition as (B.1). Denote uτ,θ (t, x) := ψθ,t,x(Zτ ). Then (B.3) becomes:

(B.5) Tτ

(
uθ (t, x)

)= E
′[uτ,θ (t, x)

]
P-a.s.

Assume that the noise W is time-dependent. (The case of the time-independent noise is similar.) Since {uτ,θ (t, x); t ≥
0, x ∈ Rd} is a solution of (B.4) with the same initial condition as (B.1), we see that

uτ,θ (t, x) = J0(t, x) + √
θ

∫ t

0

∫
Rd

G(t − s, x − y)uτ,θ (s, y)Zτ (δs, δy)

= J0(t, x) +
√

e−2τ θ

∫ t

0

∫
Rd

G(t − s, x − y)uτ,θ (s, y)W(δs, δy)

+
√

θ
(
1 − e−2τ

)∫ t

0

∫
Rd

G(t − s, x − y)uτ,θ (s, y)W ′(δs, δy).

We take expectation with respect to P
′. The third term on the right-hand side above disappears since the Skorohod integral

has zero mean. Since W and W ′ are independent, the expectation with respect to P
′ commutes with the Skorohod integral

with respect to W and hence

E
′[uτ,θ (t, x)

]= J0(t, x) +
√

e−2τ θ

∫ t

0

∫
Rd

G(t − s, x − y)E′[uτ,θ (s, y)
]
W(δs, δy).

This proves that the process {E′[uτ,θ (t, x)]; t ≥ 0, x ∈ R
d} is a solution of

Lu =
√

e−2τ θuẆ , t > 0, x ∈R
d

with the same initial condition as (B.1). Since this equation has the unique solution ue−2τ θ , we conclude that for any t > 0
and x ∈ R

d ,

E
′[uτ,θ (t, x)

]= ue−2τ θ (t, x) P-a.s.

Combining this with (B.5), we obtain that for any τ > 0, t > 0 and x ∈R
d ,

(B.6) Tτ

(
uθ (t, x)

)= ue−2τ θ (t, x) P-a.s.
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By the hypercontractivity of the Ornstein–Uhlenbeck semigroup (see, e.g., Theorem 1.4.1 of Nualart [22] or Theo-
rem 5.1 of Janson [27]), for any τ > 0, p > 1 and F ∈ Lp(�),

‖TτF‖q(τ) ≤ ‖F‖p

where q(τ) = e2τ (p − 1) + 1. We apply this to F = uθ (t, x). Using (B.6), we obtain:∥∥ue−2τ θ (t, x)
∥∥

q(τ)
≤ ∥∥uθ (t, x)

∥∥
p
.

For fixed 1 < p ≤ q , choose τ > 0 such that q(τ) = q . Then e−2τ = p−1
q−1 and (B.2) follows. �

Appendix C: Proof of (6.16)

Under Assumption A, the density function ϕ of μ satisfies the scaling property (1.5). Using a change of variables, and
letting η0 = 0, we have

(C.1)

∫
(Rd )n

n∏
j=1

1

1 + |ξj + · · · + ξn|2 φ(ξj )ϕ(ξj ) dξ1 . . . dξn

=
∫

(Rd )n

n∏
j=1

1

1 + |ηj |2 φ(ηj − ηj−1)ϕ(ηj − ηj−1) dη1 . . . dηn.

The last integral coincides with the integral on the far right-hand-side of equation (3.3) of [3], in which f is replaced
by φ. We argue as on pages 636–637 of [3] and define the linear operator T : L2(Rd) → L2(Rd):

(T g)(η) = 1√
1 + |η|2

∫
Rd

1√
1 + |ξ |2 φ(ξ − η)ϕ(ξ − η)g(ξ) dξ, g ∈ L2(

R
d
)
.

This operator is self-adjoint, and has the spectral representation:

〈T g,g〉 =
∫
R

θμg(dθ) for all g ∈ L2(
R

d
)
,

where μg is a probability measure on R. Since ϕ and ψ are non-negative definite, so is their product. Therefore, the
operator T is non-negative-definite. This implies that μg has support in (0,∞) for any g. For any g,h ∈ L2(Rd),

〈h,T g〉 =
∫
Rd

(∫
Rd

h(η)√
1 + |η|2

g(ξ + η)√
1 + |ξ + η|2 dη

)
φ(ξ)ϕ(ξ) dξ.

Assume that g ∈ L2(Rd) is bounded, has compact support K and ‖g‖L2(Rd ) = 1. There is a δ > 0 such that φ,ϕ,Q ≥ δ

on K , where Q(ξ) = 1/
√

1 + |ξ |2. By (3.7) and (3.9) of [3],∫
(Rd )n

n∏
j=1

1

1 + |ηj |2 φ(ηj − ηj−1)ϕ(ηj − ηj−1) dη1 . . . dηn ≥ δ3‖g‖−2
L∞(Rd )

〈g,T g〉n−1.

Note that relation (3.9) of [3] says that
∫∞
−∞ θn−1μg(dθ) ≥ (

∫∞
−∞ θμg(dθ))n−1 (due to Jensen’s inequality). For this

inequality, we need that μg has support in (0,∞).
Using (C.1), it follows that

lim inf
n→∞

1

n
log

∫
(Rd )n

n∏
j=1

1

1 + |ξj + · · · + ξn|2 φ(ξj )ϕ(ξj ) dξ1 . . . dξn ≥ log〈g,T g〉.

Since the set of bounded, compactly supported functions in L2(Rd) is dense in L2(Rd), the previous inequality holds
for any g ∈ L2(Rd) with ‖g‖L2(Rd ) = 1. We take the supremum over all functions g ∈ L2(Rd) with ‖g‖L2(Rd ) = 1. The
conclusion follows.
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